IDEAS home Printed from https://ideas.repec.org/p/zbw/dbrrns/999.html
   My bibliography  Save this paper

Closed form integration of artificial neural networks with some applications

Author

Listed:
  • Gottschling, Andreas
  • Haefke, Christian
  • White, Halbert

Abstract

Many economic and econometric applications require the integration of functions lacking a closed form antiderivative, which is therefore a task that can only be solved by numerical methods. We propose a new family of probability densities that can be used as substitutes and have the property of closed form integrability. This is especially advantageous in cases where either the complexity of a problem makes numerical function evaluations very costly, or fast information extraction is required for time-varying environments. Our approach allows generally for nonparametric maximum likelihood density estimation and may thus find a variety of applications, two of which are illustrated briefly: Estimation of Value at Risk based on approximations to the density of stock returns; Recovering risk neutral densities for the valuation of options from the option price - strike price relation.

Suggested Citation

  • Gottschling, Andreas & Haefke, Christian & White, Halbert, 1999. "Closed form integration of artificial neural networks with some applications," Research Notes 99-9, Deutsche Bank Research.
  • Handle: RePEc:zbw:dbrrns:999
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/40272/1/309107636.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John M. Maheu & Thomas H. McCurdy, 2002. "Nonlinear Features of Realized FX Volatility," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 668-681, November.

    More about this item

    Keywords

    Option Pricing; Neural Networks; Nonparametric Density Estimation;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:dbrrns:999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbresde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.