IDEAS home Printed from https://ideas.repec.org/p/zbw/cfrwps/0911.html
   My bibliography  Save this paper

Cross-sectional analysis of risk-neutral skewness

Author

Listed:
  • Taylor, Stephen J.
  • Yadav, Pradeep K.
  • Zhang, Yuanyuan

Abstract

We investigate the association of various firm-specific and market-wide factors with the riskneutral skewness (RNS) implied by the prices of individual stock options. Our analysis covers 149 U.S. firms over a four-year period. Our choice of firms is based on adequate liquidity and trading interest across different strike prices in the options market, ensuring economically meaningful RNS estimates. We also incorporate significant methodological enhancements. Consistent with earlier results, we find that the RNS of individual firms varies significantly and negatively with firm size, firm systematic risk, and market volatility; and significantly and positively with the RNS of the market index; and most of the variation in individual RNS is explained by firm-specific rather than market-wide factors. We also document several interesting new results that are clearly unambiguous and significantly stronger than in earlier work, or opposite to earlier evidence, or for variables that have been examined for the first time. First, we find that market sentiment has a negative and significant effect on RNS. Second, we find that higher a firm's own volatility, the more negative the RNS, a relationship that is in the same direction as for overall market volatility. Third, greater market liquidity is associated with more negative RNS, but the liquidity that is relevant for RNS is that of the options market, rather than that in the underlying stock. Surprisingly, volatility asymmetry is not relevant for RNS. Finally, the leverage ratio is not negatively but positively and strongly related with RNS.

Suggested Citation

  • Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2009. "Cross-sectional analysis of risk-neutral skewness," CFR Working Papers 09-11, University of Cologne, Centre for Financial Research (CFR).
  • Handle: RePEc:zbw:cfrwps:0911
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/41389/1/616612141.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2001. "Forecasting crashes: trading volume, past returns, and conditional skewness in stock prices," Journal of Financial Economics, Elsevier, vol. 61(3), pages 345-381, September.
    2. Dennis, Patrick & Mayhew, Stewart & Stivers, Chris, 2006. "Stock Returns, Implied Volatility Innovations, and the Asymmetric Volatility Phenomenon," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(2), pages 381-406, June.
    3. Bakshi, Gurdip & Madan, Dilip, 2000. "Spanning and derivative-security valuation," Journal of Financial Economics, Elsevier, vol. 55(2), pages 205-238, February.
    4. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    5. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    6. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    7. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    8. Bevan Blair & Ser-Huang Poon & Stephen Taylor, 2002. "Asymmetric and crash effects in stock volatility for the S&P 100 index and its constituents," Applied Financial Economics, Taylor & Francis Journals, vol. 12(5), pages 319-329.
    9. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    10. repec:bla:jfinan:v:53:y:1998:i:2:p:431-465 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Borochin, Paul & Chang, Hao & Wu, Yangru, 2020. "The information content of the term structure of risk-neutral skewness," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 247-274.
    2. Liu, Qing & Wang, Shouyang & Sui, Cong, 2023. "Risk appetite and option prices: Evidence from the Chinese SSE50 options market," International Review of Financial Analysis, Elsevier, vol. 86(C).
    3. Abderrahmen Aloulou & Siwar Ellouze, 2017. "Does fundamental value run asset price formation process? Evidence from option price information content," Journal of Asset Management, Palgrave Macmillan, vol. 18(4), pages 255-268, July.
    4. Borochin, Paul & Zhao, Yanhui, 2019. "Belief heterogeneity in the option markets and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 107(C), pages 1-1.
    5. Nessim Souissi, 2017. "The Implied Risk Neutral Density Dynamics: Evidence from the S&P TSX 60 Index," Journal of Applied Mathematics, Hindawi, vol. 2017, pages 1-10, June.
    6. Przemysław S. Stilger & Alexandros Kostakis & Ser-Huang Poon, 2017. "What Does Risk-Neutral Skewness Tell Us About Future Stock Returns?," Management Science, INFORMS, vol. 63(6), pages 1814-1834, June.
    7. Lim, Kian Guan & Chen, Ying & Yap, Nelson K.L., 2019. "Intraday information from S&P 500 Index futures options," Journal of Financial Markets, Elsevier, vol. 42(C), pages 29-55.
    8. Birru, Justin & Figlewski, Stephen, 2012. "Anatomy of a meltdown: The risk neutral density for the S&P 500 in the fall of 2008," Journal of Financial Markets, Elsevier, vol. 15(2), pages 151-180.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Engle, Robert & Mistry, Abhishek, 2014. "Priced risk and asymmetric volatility in the cross section of skewness," Journal of Econometrics, Elsevier, vol. 182(1), pages 135-144.
    2. Chang, Bo Young & Christoffersen, Peter & Jacobs, Kris, 2013. "Market skewness risk and the cross section of stock returns," Journal of Financial Economics, Elsevier, vol. 107(1), pages 46-68.
    3. Sirio Aramonte & Mohammad R. Jahan-Parvar & Samuel Rosen & John W. Schindler, 2022. "Firm-Specific Risk-Neutral Distributions with Options and CDS," Management Science, INFORMS, vol. 68(9), pages 7018-7033, September.
    4. Peter Christoffersen & Kris Jacobs & Gregory Vainberg, 2007. "Forward-Looking Betas," CREATES Research Papers 2007-39, Department of Economics and Business Economics, Aarhus University.
    5. Haehean Park & Baeho Kim & Hyeongsop Shim, 2019. "A smiling bear in the equity options market and the cross‐section of stock returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(11), pages 1360-1382, November.
    6. Mohrschladt, Hannes & Langer, Thomas, 2020. "Biased information weight processing in stock markets," Journal of Empirical Finance, Elsevier, vol. 57(C), pages 89-106.
    7. Mohrschladt, Hannes & Schneider, Judith C., 2021. "Option-implied skewness: Insights from ITM-options," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    8. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    9. Brinkmann, Felix & Korn, Olaf, 2014. "Risk-adjusted option-implied moments," CFR Working Papers 14-07, University of Cologne, Centre for Financial Research (CFR).
    10. Birru, Justin & Wang, Baolian, 2016. "Nominal price illusion," Journal of Financial Economics, Elsevier, vol. 119(3), pages 578-598.
    11. Sirio Aramonte & Mohammad Jahan-Parvar & Samuel Rosen & John W. Schindler, 2017. "Firm-Specific Risk-Neutral Distributions : The Role of CDS Spreads," International Finance Discussion Papers 1212, Board of Governors of the Federal Reserve System (U.S.).
    12. Mixon, Scott, 2009. "Option markets and implied volatility: Past versus present," Journal of Financial Economics, Elsevier, vol. 94(2), pages 171-191, November.
    13. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    14. Shi, Yun & Cui, Xiangyu & Zhou, Xunyu, 2020. "Beta and Coskewness Pricing: Perspective from Probability Weighting," SocArXiv 5rqhv, Center for Open Science.
    15. Jung‐Soon Shin & Minki Kim & Dongjun Oh & Tong Suk Kim, 2019. "Do hedge funds time market tail risk? Evidence from option‐implied tail risk," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 205-237, February.
    16. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    17. H. Peter Boswijk & Roger J. A. Laeven & Evgenii Vladimirov, 2022. "Estimating Option Pricing Models Using a Characteristic Function-Based Linear State Space Representation," Papers 2210.06217, arXiv.org.
    18. Chris Florakis & Christodoulos Louca & Roni Michaely & Michael Weber, 2020. "Cybersecurity Risk," Working Papers 2020-178, Becker Friedman Institute for Research In Economics.
    19. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    20. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.

    More about this item

    Keywords

    risk-neutral distribution; skewness; stock options; ARCH models;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cfrwps:0911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/cfkoede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.