IDEAS home Printed from https://ideas.repec.org/p/zbw/cauman/508.html
   My bibliography  Save this paper

Sales force deployment by mathematical programming

Author

Listed:
  • Haase, Knut

Abstract

The sales force deployment problem is considered which arises in many selling organizations. As a solution a novel mixed-integer formulation is introduced which is specifically characterized by an infinite number of variables. A column generation approach is proposed to obtain upper and lower bounds. The associated subproblem is solved analytically. A computational study shows that the approach outperforms recently introduced approaches.

Suggested Citation

  • Haase, Knut, 1999. "Sales force deployment by mathematical programming," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 508, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  • Handle: RePEc:zbw:cauman:508
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/147596/1/manuskript_508.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andris A. Zoltners & Prabhakant Sinha, 1983. "Sales Territory Alignment: A Review and Model," Management Science, INFORMS, vol. 29(11), pages 1237-1256, November.
    2. Bernd Skiera & Sönke Albers, 1998. "COSTA: Contribution Optimizing Sales Territory Alignment," Marketing Science, INFORMS, vol. 17(3), pages 196-213.
    3. Andreas Drexl & Knut Haase, 1999. "Fast Approximation Methods for Sales Force Deployment," Management Science, INFORMS, vol. 45(10), pages 1307-1323, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    2. Haase, Knut & Müller, Sven, 2014. "Upper and lower bounds for the sales force deployment problem with explicit contiguity constraints," European Journal of Operational Research, Elsevier, vol. 237(2), pages 677-689.
    3. Sprecher, Arno, 1999. "Sales force deployment by genetic concepts," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 514, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Andris A. Zoltners & Prabhakant Sinha, 2005. "The 2004 ISMS Practice Prize Winner—Sales Territory Design: Thirty Years of Modeling and Implementation," Marketing Science, INFORMS, vol. 24(3), pages 313-331, September.
    5. Haugland, Dag & Ho, Sin C. & Laporte, Gilbert, 2007. "Designing delivery districts for the vehicle routing problem with stochastic demands," European Journal of Operational Research, Elsevier, vol. 180(3), pages 997-1010, August.
    6. Fabio Caldieraro & Anne T. Coughlan, 2009. "Optimal Sales Force Diversification and Group Incentive Payments," Marketing Science, INFORMS, vol. 28(6), pages 1009-1026, 11-12.
    7. Anna Franceschetti & Ola Jabali & Gilbert Laporte, 2017. "Continuous approximation models in freight distribution management," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(3), pages 413-433, October.
    8. Darmon, Rene Y., 2002. "Salespeople's management of customer information: Impact on optimal territory and sales force sizes," European Journal of Operational Research, Elsevier, vol. 137(1), pages 162-176, February.
    9. Ríos-Mercado, Roger Z. & López-Pérez, J. Fabián, 2013. "Commercial territory design planning with realignment and disjoint assignment requirements," Omega, Elsevier, vol. 41(3), pages 525-535.
    10. M Blais & S D Lapierre & G Laporte, 2003. "Solving a home-care districting problem in an urban setting," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(11), pages 1141-1147, November.
    11. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    12. Murali Mantrala & Sönke Albers & Fabio Caldieraro & Ove Jensen & Kissan Joseph & Manfred Krafft & Chakravarthi Narasimhan & Srinath Gopalakrishna & Andris Zoltners & Rajiv Lal & Leonard Lodish, 2010. "Sales force modeling: State of the field and research agenda," Marketing Letters, Springer, vol. 21(3), pages 255-272, September.
    13. Mourão, Maria Cândida & Nunes, Ana Catarina & Prins, Christian, 2009. "Heuristic methods for the sectoring arc routing problem," European Journal of Operational Research, Elsevier, vol. 196(3), pages 856-868, August.
    14. Andreas Drexl & Knut Haase, 1999. "Fast Approximation Methods for Sales Force Deployment," Management Science, INFORMS, vol. 45(10), pages 1307-1323, October.
    15. Drexl, Andreas & Haase, Knut, 1996. "Fast approximation methods for sales force deployment," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 411, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Albers, Sönke, 2012. "Optimizable and implementable aggregate response modeling for marketing decision support," International Journal of Research in Marketing, Elsevier, vol. 29(2), pages 111-122.
    17. Jania Astrid Saucedo Martinez & Abraham Mendoza & Maria del Rosario Alvarado Vazquez, 2019. "Collection of Solid Waste in Municipal Areas: Urban Logistics," Sustainability, MDPI, vol. 11(19), pages 1-15, October.
    18. Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre (Ed.), 2000. "Jahresbericht 1999," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 522, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Rui Fragoso & Conceição Rego & Vladimir Bushenkov, 2016. "Clustering of Territorial Areas: A Multi-Criteria Districting Problem," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 179-198, December.
    20. Clark, Derek J. & Nilssen, Tore, 2020. "Creating balance in dynamic competitions," International Journal of Industrial Organization, Elsevier, vol. 69(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:cauman:508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/ibkiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.