IDEAS home Printed from https://ideas.repec.org/p/zbw/bayism/287771.html
   My bibliography  Save this paper

A digital infrastructure for integrating decentralized assets into redispatch. Decentralized Redispatch (DEER): Interfaces for providing flexibility

Author

Listed:
  • Körner, Marc-Fabian
  • Nolting, Lars
  • Babel, Matthias
  • Ehaus, Marvin
  • Heeß, Paula
  • Lautenschlager, Jonathan
  • Radtke, Malin
  • Schick, Leo
  • Strüker, Jens
  • Wiedemann, Stefanie
  • Zwede, Till

Abstract

In response to the challenges posed by an increasingly decentralized energy system characterized by a high penetration of renewable energy sources, grid operators are experiencing heightened pressure to effectively manage grid congestion. Concurrently, both the European Union as well as the German government's ambitious climate targets are fostering the proliferation of small-scale systems like heat pumps, photovoltaic systems with battery storages, and electric cars, thereby enhancing the flexibility potential for redispatch operations. The project "Decentralized Redispatch (DEER): Interfaces for providing flexibility" aims to explore the integration of decentral flexibility into congestion management practices. This White Paper provides an overview on the project's first outcomes and the necessary background technologies and methods. The project's primary focus lies in designing an architecture in the context of a multi-agentsystem that facilities secure and sovereign communication among all stakeholders in such a decentralized redispatch, ensuring data security, data privacy, and verifiability. The DEER project sets out to analyze the potential of leveraging self-sovereign identity management methods, combined with technologies such as zero-knowledge proofs and distributed ledgers, as a robust framework for achieving these objectives.

Suggested Citation

  • Körner, Marc-Fabian & Nolting, Lars & Babel, Matthias & Ehaus, Marvin & Heeß, Paula & Lautenschlager, Jonathan & Radtke, Malin & Schick, Leo & Strüker, Jens & Wiedemann, Stefanie & Zwede, Till, 2024. "A digital infrastructure for integrating decentralized assets into redispatch. Decentralized Redispatch (DEER): Interfaces for providing flexibility," Bayreuth Reports on Information Systems Management 70, University of Bayreuth, Chair of Information Systems Management, revised 2024.
  • Handle: RePEc:zbw:bayism:287771
    DOI: 10.15495/Epub_UBT_00007694
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/296469/1/1890357537.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.15495/Epub_UBT_00007694?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Maldet & Daniel Schwabeneder & Georg Lettner & Christoph Loschan & Carlo Corinaldesi & Hans Auer, 2022. "Beyond Traditional Energy Sector Coupling: Conserving and Efficient Use of Local Resources," Sustainability, MDPI, vol. 14(12), pages 1-36, June.
    2. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    3. Sorknæs, Peter & Thellufsen, Jakob Zinck & Knobloch, Kai & Engelbrecht, Kurt & Yuan, Meng, 2023. "Economic potentials of carnot batteries in 100% renewable energy systems," Energy, Elsevier, vol. 282(C).
    4. Cassetta, Ernesto & Nava, Consuelo R. & Zoia, Maria Grazia, 2022. "A three-step procedure to investigate the convergence of electricity and natural gas prices in the European Union," Energy Economics, Elsevier, vol. 105(C).
    5. Christoph Loschan & Daniel Schwabeneder & Matthias Maldet & Georg Lettner & Hans Auer, 2023. "Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market," Energies, MDPI, vol. 16(14), pages 1-35, July.
    6. Heffron, Raphael J. & Körner, Marc-Fabian & Schöpf, Michael & Wagner, Jonathan & Weibelzahl, Martin, 2021. "The role of flexibility in the light of the COVID-19 pandemic and beyond: Contributing to a sustainable and resilient energy future in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    7. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    8. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    9. Michaelis, Anne & Hanny, Lisa & Körner, Marc-Fabian & Strüker, Jens & Weibelzahl, Martin, 2024. "Consumer-centric electricity markets: Six design principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Thure Traber & Franziska Simone Hegner & Hans-Josef Fell, 2021. "An Economically Viable 100% Renewable Energy System for All Energy Sectors of Germany in 2030," Energies, MDPI, vol. 14(17), pages 1-17, August.
    11. Vering, Christian & Göbel, Stephan & Klebig, Tim & Will, Florian & Horst, Janik & Wüllhorst, Fabian & Nürenberg, Markus & Mehrfeld, Philipp & Müller, Dirk, 2024. "Towards a defossilized building sector with field tests in the lab: Review, development, and evaluation," Applied Energy, Elsevier, vol. 365(C).
    12. Gilbert Fridgen & Marc-Fabian Körner & Steffen Walters & Martin Weibelzahl, 2021. "Not All Doom and Gloom: How Energy-Intensive and Temporally Flexible Data Center Applications May Actually Promote Renewable Energy Sources," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(3), pages 243-256, June.
    13. Bjørndal, Endre & Bjørndal, Mette Helene & Coniglio, Stefano & Körner, Marc-Fabian & Leinauer, Christina & Weibelzahl, Martin, 2023. "Energy storage operation and electricity market design: On the market power of monopolistic storage operators," European Journal of Operational Research, Elsevier, vol. 307(2), pages 887-909.
    14. Kockel, Christina & Nolting, Lars & Priesmann, Jan & Praktiknjo, Aaron, 2022. "Does renewable electricity supply match with energy demand? – A spatio-temporal analysis for the German case," Applied Energy, Elsevier, vol. 308(C).
    15. Angelidis, O. & Ioannou, A. & Friedrich, D. & Thomson, A. & Falcone, G., 2023. "District heating and cooling networks with decentralised energy substations: Opportunities and barriers for holistic energy system decarbonisation," Energy, Elsevier, vol. 269(C).
    16. Md. Nasimul Islam Maruf, 2021. "A Novel Method for Analyzing Highly Renewable and Sector-Coupled Subnational Energy Systems—Case Study of Schleswig-Holstein," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    17. Osorio-Aravena, Juan Carlos & Aghahosseini, Arman & Bogdanov, Dmitrii & Caldera, Upeksha & Ghorbani, Narges & Mensah, Theophilus Nii Odai & Haas, Jannik & Muñoz-Cerón, Emilio & Breyer, Christian, 2023. "Synergies of electrical and sectoral integration: Analysing geographical multi-node scenarios with sector coupling variations for a transition towards a fully renewables-based energy system," Energy, Elsevier, vol. 279(C).
    18. Simon Wenninger & Christian Wiethe, 2022. "The Human’s Comfort Mystery—Supporting Energy Transition with Light-Color Dimmable Room Lighting," Sustainability, MDPI, vol. 14(4), pages 1-10, February.
    19. Benedikt Walker, 2022. "A TERRITORIAL PERSPECTIVE ON URBAN AND REGIONAL ENERGY TRANSITIONS: Shifting Power Densities in the Berlin‐Brandenburg Region," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 46(5), pages 766-783, September.
    20. Robert Pietracho & Christoph Wenge & Przemyslaw Komarnicki & Leszek Kasprzyk, 2022. "Multi-Criterial Assessment of Electric Vehicle Integration into the Commercial Sector—A Case Study," Energies, MDPI, vol. 16(1), pages 1-29, December.

    More about this item

    Keywords

    Redispatch; SSI; Multi-Agent Systems; Zero Knowledge Proof;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bayism:287771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwbayde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.