IDEAS home Printed from https://ideas.repec.org/p/yor/hectdg/16-26.html
   My bibliography  Save this paper

A New Econometric Method for Estimating Disease Prevalence: An Application to Multi-Drug Resistant Tuberculosis

Author

Listed:
  • McLaren, Z.
  • Burger, R.

Abstract

Accurate information on disease prevalence is needed to target limited health resources in order to maximize overall population health. Applying rigorous econometric methods to routinely collected data can produce accurate estimates of disease prevalence and under-detection rates at a fraction of the cost of alternatives such as prevalence surveys or universal diagnostic testing. Such estimates are valuable in developing countries to inform evidence-based health policy. We develop a simple framework with minimal assumptions to capture key features of clinical decision making surrounding diagnostic testing in resource limited settings. When it is infeasible to test every at-risk patient, clinicians must triage available resources to test those deemed most likely to have the disease. We use standard econometric estimation methods and iterative numerical optimization techniques to estimate (a) disease prevalence and (b) the accuracy with which clinicians triage patients for testing. We implement an instrumental variables approach using national and local policy changes that exogenously shift the available resources for diagnostic testing as instruments. We apply this method to tuberculosis (TB), which recently surpassed HIV as the leading infectious disease cause of death in the world. We use a national database of TB test data from South Africa, which includes over 11 million patients, to examine diagnostic testing for multi-drug resistant TB (MDR-TB). The predictions from our model closely match observed patterns in the data. We find that at least one-quarter of MDR-TB cases were undiagnosed between 2004-2011. Our estimates show that the official World Health Organization estimate of 2.5% based on notification rates is too low, and MDR-TB prevalence in South Africa could be as high as 3.29 - 3.37%. Noise-to-signal ratios in MDR-TB detection estimated in our model enable the identification of areas where clinicians do a poor job of sorting patients by MDR-TB risk prior to testing. In the case of MDR-TB there is a need for greater investment in early detection and more effective treatment. Our method of identifying areas with high MDR-TB under-detection rates, which was heretofore unmeasured and contributes to high transmission rates, provides clinicians and policy makers with a formidable new tool for targeting efforts to control TB. This method should be deployed in countries such as India, China and Russia, which together account for over 50% of MDR-TB cases worldwide, as well as applied to other infectious and non-infectious diseases where prevalence data is lacking.

Suggested Citation

  • McLaren, Z. & Burger, R., 2016. "A New Econometric Method for Estimating Disease Prevalence: An Application to Multi-Drug Resistant Tuberculosis," Health, Econometrics and Data Group (HEDG) Working Papers 16/26, HEDG, c/o Department of Economics, University of York.
  • Handle: RePEc:yor:hectdg:16/26
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/1626.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    2. McGovern, Mark E. & Bärnighausen, Till & Giampiero Marra & Rosalba Radice, 2015. "On the Assumption of Bivariate Normality in Selection Models: A Copula Approach Applied to Estimating HIV Prevalence," Working Paper 199101, Harvard University OpenScholar.
    3. Yong Kim, Jim & Shakow, Aaron & Mate, Kedar & Vanderwarker, Chris & Gupta, Rajesh & Farmer, Paul, 2005. "Limited good and limited vision: multidrug-resistant tuberculosis and global health policy," Social Science & Medicine, Elsevier, vol. 61(4), pages 847-859, August.
    4. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prosper Donovon & Alastair R. Hall, 2015. "GMM and Indirect Inference: An appraisal of their connections and new results on their properties under second order identification," Economics Discussion Paper Series 1505, Economics, The University of Manchester.
    2. Bolduc, Denis & Khalaf, Lynda & Yélou, Clément, 2010. "Identification robust confidence set methods for inference on parameter ratios with application to discrete choice models," Journal of Econometrics, Elsevier, vol. 157(2), pages 317-327, August.
    3. Nikhil Agarwal, 2015. "An Empirical Model of the Medical Match," American Economic Review, American Economic Association, vol. 105(7), pages 1939-1978, July.
    4. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    5. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    6. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    7. Denis Bolduc & Lynda Khalaf & Clément Yélou, 2005. "Identification Robust Confidence Sets Methods for Inference on Parameter Ratios and their Application to Estimating Value-of-Time," Computing in Economics and Finance 2005 48, Society for Computational Economics.
    8. Rulof P. Burger & Zoë M. McLaren, 2017. "An econometric method for estimating population parameters from non‐random samples: An application to clinical case finding," Health Economics, John Wiley & Sons, Ltd., vol. 26(9), pages 1110-1122, September.
    9. Bolduc, Denis & Khalaf, Lynda & Moyneur, Érick, 2008. "Identification-robust simulation-based inference in joint discrete/continuous models for energy markets," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3148-3161, February.
    10. Creel, Michael & Kristensen, Dennis, 2016. "On selection of statistics for approximate Bayesian computing (or the method of simulated moments)," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 99-114.
    11. Carlos Perez Montes, 2012. "Regulatory bias in the price structure of local telephone services," Working Papers 1201, Banco de España.
    12. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    13. Cho, Seo-young & Vadlamannati, Krishna Chaitanya, 2010. "Compliance for big brothers: An empirical analysis on the impact of the anti-trafficking protocol," University of Göttingen Working Papers in Economics 118, University of Goettingen, Department of Economics.
    14. B. James Deaton & Getu Hailu & Xiaoye Zhou, 2014. "Poverty in Canada: Does Manufacturing Matter?," Growth and Change, Wiley Blackwell, vol. 45(2), pages 362-376, June.
    15. Wo[ss]mann, Ludger & West, Martin, 2006. "Class-size effects in school systems around the world: Evidence from between-grade variation in TIMSS," European Economic Review, Elsevier, vol. 50(3), pages 695-736, April.
    16. Lucia Rizzica, 2018. "When the Cat’s Away The Effects of Spousal Migration on Investments on Children," The World Bank Economic Review, World Bank, vol. 32(1), pages 85-108.
    17. Vieira, Flávio & MacDonald, Ronald & Damasceno, Aderbal, 2012. "The role of institutions in cross-section income and panel data growth models: A deeper investigation on the weakness and proliferation of instruments," Journal of Comparative Economics, Elsevier, vol. 40(1), pages 127-140.
    18. Alston Lee J. & Mueller Bernardo, 2018. "Priests, Conflicts and Property Rights: the Impacts on Tenancy and Land Use in Brazil," Man and the Economy, De Gruyter, vol. 5(1), pages 1-26, June.
    19. Laisney, François & Pohlmeier, Winfried & Staat, Matthias, 1991. "Estimation of labour supply functions using panel data: a survey," ZEW Discussion Papers 91-05, ZEW - Leibniz Centre for European Economic Research.
    20. Isaiah Andrews & Anna Mikusheva, 2016. "Conditional Inference With a Functional Nuisance Parameter," Econometrica, Econometric Society, vol. 84, pages 1571-1612, July.
    21. McCausland, David & Pouliakas, Konstantinos & Theodossiou, Ioannis, 2005. "Some are Punished and Some are Rewarded: A Study of the Impact of Performance Pay on Job Satisfaction," MPRA Paper 14243, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:16/26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jane Rawlings (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.