IDEAS home Printed from https://ideas.repec.org/p/wuu/wpaper/hsc1004.html
   My bibliography  Save this paper

Ruin Probability in Finite Time

Author

Listed:
  • Krzysztof Burnecki
  • Marek Teuerle

Abstract

The ruin probability in finite time can only be calculated analytically for a few special cases of the claim amount distribution. The most classic example is discussed in Section 1.2. The value can always be computed directly using Monte Carlo simulations, however, this is usually a time-consuming procedure. Thus, finding a reliable approximation is really important from a practical point of view. The most important approximations of the finite time ruin probability are presented in Section 1.3. They are further illustrated in Section 1.4 using the Danish fire losses dataset, which concerns major fire losses in profits that occurred between 1980 and 2002 and were recorded by Copenhagen Re.

Suggested Citation

  • Krzysztof Burnecki & Marek Teuerle, 2010. "Ruin Probability in Finite Time," HSC Research Reports HSC/10/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
  • Handle: RePEc:wuu:wpaper:hsc1004
    as

    Download full text from publisher

    File URL: http://www.im.pwr.wroc.pl/~hugo/RePEc/wuu/wpaper/HSC_10_04.pdf
    File Function: Original version, 2010
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dickson,David C. M., 2010. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521176750.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Burnecki & Rafal Weron, 2006. "Visualization tools for insurance risk processes," HSC Research Reports HSC/06/06, Hugo Steinhaus Center, Wroclaw University of Technology.
    2. Pawel Mista, 2006. "Analytical and numerical approach to corporate operational risk modelling," HSC Research Reports HSC/06/03, Hugo Steinhaus Center, Wroclaw University of Technology.
    3. Krzysztof Burnecki & Marek A. Teuerle & Aleksandra Wilkowska, 2021. "Ruin Probability for the Insurer–Reinsurer Model for Exponential Claims: A Probabilistic Approach," Risks, MDPI, vol. 9(5), pages 1-10, May.
    4. Başak Bulut Karageyik & Şule Şahin, 2017. "Determination of the Optimal Retention Level Based on Different Measures," JRFM, MDPI, vol. 10(1), pages 1-21, January.
    5. Yacine Koucha & Alfredo D. Egidio dos Reis, 2021. "Approximations to ultimate ruin probabilities with a Wienner process perturbation," Papers 2107.02537, arXiv.org.
    6. Agata Boratyńska & Krzysztof Kondraszuk, 2013. "Odporność składki kwantylowej na ε-zaburzenie rozkładu liczby szkód," Collegium of Economic Analysis Annals, Warsaw School of Economics, Collegium of Economic Analysis, issue 31, pages 117-136.
    7. David J. Santana & Juan González-Hernández & Luis Rincón, 2017. "Approximation of the Ultimate Ruin Probability in the Classical Risk Model Using Erlang Mixtures," Methodology and Computing in Applied Probability, Springer, vol. 19(3), pages 775-798, September.
    8. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    9. Franck Adékambi & Kokou Essiomle, 2020. "Ruin Probability for Stochastic Flows of Financial Contract under Phase-Type Distribution," Risks, MDPI, vol. 8(2), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1422-1460, October.
    2. Feng, Runhuan & Volkmer, Hans W., 2012. "Modeling credit value adjustment with downgrade-triggered termination clause using a ruin theoretic approach," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 409-421.
    3. Boonen, Tim J., 2019. "Equilibrium recoveries in insurance markets with limited liability," Journal of Mathematical Economics, Elsevier, vol. 85(C), pages 38-45.
    4. Noba, Kei, 2021. "On the optimality of double barrier strategies for Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 73-102.
    5. Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
    6. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    7. Wang, Wenyuan & Chen, Ping & Li, Shuanming, 2020. "Generalized expected discounted penalty function at general drawdown for Lévy risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 12-25.
    8. Cheung, Eric C.K., 2011. "A generalized penalty function in Sparre Andersen risk models with surplus-dependent premium," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 384-397, May.
    9. Yonit Barron & David Perry & Wolfgang Stadje, 2016. "A make-to-stock production/inventory model with MAP arrivals and phase-type demands," Annals of Operations Research, Springer, vol. 241(1), pages 373-409, June.
    10. Egami, Masahiko & Leung, Tim & Yamazaki, Kazutoshi, 2013. "Default swap games driven by spectrally negative Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 123(2), pages 347-384.
    11. Feng, Runhuan & Shimizu, Yasutaka, 2014. "Potential measures for spectrally negative Markov additive processes with applications in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 11-26.
    12. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    13. Ivanovs, Jevgenijs, 2013. "A note on killing with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 29-34.
    14. Christian Paroissin & Landy Rabehasaina, 2015. "First and Last Passage Times of Spectrally Positive Lévy Processes with Application to Reliability," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 351-372, June.
    15. Eric C. K. Cheung & David Landriault, 2012. "On a Risk Model with Surplus-dependent Premium and Tax Rates," Methodology and Computing in Applied Probability, Springer, vol. 14(2), pages 233-251, June.
    16. Biener, Christian & Eling, Martin & Jia, Ruo, 2017. "The structure of the global reinsurance market: An analysis of efficiency, scale, and scope," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 213-229.
    17. Bayraktar, Erhan & Kyprianou, Andreas E. & Yamazaki, Kazutoshi, 2013. "On Optimal Dividends In The Dual Model," ASTIN Bulletin, Cambridge University Press, vol. 43(3), pages 359-372, September.
    18. Neofytos Rodosthenous & Hongzhong Zhang, 2020. "When to sell an asset amid anxiety about drawdowns," Papers 2006.00282, arXiv.org.
    19. Landriault, David & Li, Bin & Wong, Jeff T.Y. & Xu, Di, 2018. "Poissonian potential measures for Lévy risk models," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 152-166.
    20. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.

    More about this item

    Keywords

    Insurance risk model; Ruin probability; Segerdahl approximation; De Vylder approximation; Diffusion approximation; Brownian motion; Levy motion;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wuu:wpaper:hsc1004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rafal Weron (email available below). General contact details of provider: https://edirc.repec.org/data/hspwrpl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.