IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwppe/0401003.html
   My bibliography  Save this paper

The Accident Externality from Driving

Author

Listed:
  • Aaron S. Edlin

    (University of California, Berkeley & National Bureau of Economic Research)

  • Pinar Karaca-Mandic

    (University of California, Berkeley)

Abstract

We estimate auto accident externalities (more specifically insurance externalities) using panel data on state-average insurance premiums and loss costs. Externalities appear to be substantial in traffic dense states: in California, for example, we find that a typical additional driver increases the total of other people's insurance costs by $2231 per year. In such states, an increase in traffic density dramatically increases aggregate insurance premiums and loss costs. In contrast, the accident externality per driver in low traffic states appears quite small. On balance, accident externalities are so large that a correcting Pigouvian tax could raise $45 billion annually in California alone, and over $140 billion nationally. The extent to which this externality results from increases in accident rates, accident severity or both remains unclear. It is also not clear whether the same externality pertains to underinsured accident costs like fatality risk.

Suggested Citation

  • Aaron S. Edlin & Pinar Karaca-Mandic, 2004. "The Accident Externality from Driving," Public Economics 0401003, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwppe:0401003
    Note: 29 pages, Acrobat .pdf
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/pe/papers/0401/0401003.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Ilek & Tanya Suchoy & Nir Klein, 2006. "Estimating the premium implicit in the yields of Treasury Bills," Israel Economic Review, Bank of Israel, vol. 4(2), pages 53-83.
    2. Chang, Eric C. & Cheng, Joseph W. & Khorana, Ajay, 2000. "An examination of herd behavior in equity markets: An international perspective," Journal of Banking & Finance, Elsevier, vol. 24(10), pages 1651-1679, October.
    3. Narayan, Seema & Narayan, Paresh Kumar & Tobing, Lutzardo, 2021. "Has tourism influenced Indonesia’s current account?," Economic Analysis and Policy, Elsevier, vol. 69(C), pages 225-237.
    4. Stephen Brown & William Goetzmann & Bing Liang & Christopher Schwarz, 2008. "Mandatory Disclosure and Operational Risk: Evidence from Hedge Fund Registration," Journal of Finance, American Finance Association, vol. 63(6), pages 2785-2815, December.
    5. Aslanidis, Nektarios & Christiansen, Charlotte, 2012. "Smooth transition patterns in the realized stock–bond correlation," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 454-464.
    6. Croce, M.M. & Nguyen, Thien T. & Raymond, S. & Schmid, L., 2019. "Government debt and the returns to innovation," Journal of Financial Economics, Elsevier, vol. 132(3), pages 205-225.
    7. Cho, Guedae & Kim, MinKyoung & Koo, Won W., 2003. "Relative Agricultural Price Changes In Different Time Horizons," 2003 Annual meeting, July 27-30, Montreal, Canada 22249, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    9. Antonio Rubia & Trino-Manuel Ñíguez, 2006. "Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(6), pages 439-458.
    10. David Hirshleifer & Danling Jiang, 2010. "A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3401-3436.
    11. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    12. Bonciani, Dario, 2015. "Estimating the effects of uncertainty over the business cycle," MPRA Paper 65921, University Library of Munich, Germany.
    13. Joshy Easaw & Roberto Golinelli, 2022. "Professionals Inflation Forecasts: The Two Dimensions Of Forecaster Inattentiveness [“Sectoral and aggregate inflation dynamics in the euro area”]," Oxford Economic Papers, Oxford University Press, vol. 74(3), pages 701-720.
    14. Coudert, Virginie & Mignon, Valérie, 2013. "The “forward premium puzzle” and the sovereign default risk," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 491-511.
    15. Scalco, Paulo R. & Braga, Marcelo J., 2015. "Identification of Market Power in Bilateral Oligopoly: The Brazilian Wholesale Market of UHT Milk," 2015 Conference, August 9-14, 2015, Milan, Italy 212278, International Association of Agricultural Economists.
    16. Timo Korkeamaki & Danielle Xu, 2015. "Institutional Investors and Foreign Exchange Risk," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 5(03), pages 1-33, September.
    17. Rime, Dagfinn & Sarno, Lucio & Sojli, Elvira, 2010. "Exchange rate forecasting, order flow and macroeconomic information," Journal of International Economics, Elsevier, vol. 80(1), pages 72-88, January.
    18. Marcelo Fernandes & Breno Neri, 2010. "Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
    19. Gu, Chen & Kurov, Alexander & Wolfe, Marketa Halova, 2018. "Relief Rallies after FOMC Announcements as a Resolution of Uncertainty," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 1-18.
    20. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.

    More about this item

    JEL classification:

    • H2 - Public Economics - - Taxation, Subsidies, and Revenue

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwppe:0401003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.