IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpge/9901003.html
   My bibliography  Save this paper

Scaling transformation and probability distributions for financial time series

Author

Listed:
  • Marc-Etienne BRACHET

    (Laboratoire de Physique Statistique, CNRS, ENS, France)

  • Erik TAFLIN

    (Direction Scientifique, AXA-UAP, France)

  • Jean Marcel TCHEOU

    (Laboratoire de Physique Statistique, ENS, France; Direction Scientifique, AXA-UAP, France)

Abstract

The price of financial assets are, since Bachelier, considered to be described by a (discrete or continuous) time sequence of random variables, i.e a stochastic process. Sharp scaling exponents or unifractal behavior of such processes has been reported in several works. In this letter we investigate the question of scaling transformation of price processes by establishing a new connexion between non-linear group theoretical methods and multifractal methods developed in mathematical physics. Using two sets of financial chronological time series, we show that the scaling transformation is a non-linear group action on the moments of the price increments. Its linear part has a spectral decomposition that puts in evidence a multifractal behavior of the price increments.

Suggested Citation

  • Marc-Etienne BRACHET & Erik TAFLIN & Jean Marcel TCHEOU, 1999. "Scaling transformation and probability distributions for financial time series," GE, Growth, Math methods 9901003, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpge:9901003
    Note: Type of Document - PostScript; prepared on TeX; to print on PostScript-color; pages: 12; figures: included-EPS
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/9901/9901003.ps.gz
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/ge/papers/9901/9901003.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    2. Adlai Fisher & Laurent Calvet & Benoit Mandelbrot, 1997. "Multifractality of Deutschemark/US Dollar Exchange Rates," Cowles Foundation Discussion Papers 1166, Cowles Foundation for Research in Economics, Yale University.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    3. Struzik, Zbigniew R., 2003. "Econonatology: the physics of the economy in labour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 344-351.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulligan, Robert F., 2004. "Fractal analysis of highly volatile markets: an application to technology equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(1), pages 155-179, February.
    2. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    3. Benoit Mandelbrot & Adlai Fisher & Laurent Calvet, 1997. "A Multifractal Model of Asset Returns," Cowles Foundation Discussion Papers 1164, Cowles Foundation for Research in Economics, Yale University.
    4. Mulligan, Robert F. & Lombardo, Gary A., 2004. "Maritime businesses: volatile stock prices and market valuation inefficiencies," The Quarterly Review of Economics and Finance, Elsevier, vol. 44(2), pages 321-336, May.
    5. Selçuk, Faruk, 2004. "Financial earthquakes, aftershocks and scaling in emerging stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 306-316.
    6. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    7. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 1999. "The Distribution of Exchange Rate Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-059, New York University, Leonard N. Stern School of Business-.
    8. Wesselhöfft, Niels & Härdle, Wolfgang Karl, 2019. "Estimating low sampling frequency risk measure by high-frequency data," IRTG 1792 Discussion Papers 2019-003, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    9. Baviera, Roberto & Vergni, Davide & Vulpiani, Angelo, 2000. "Markovian approximation in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 280(3), pages 566-581.
    10. Céline Azizieh & Wolfgang Breymann, 2005. "Estimation of the Stylized Facts of a Stochastic Cascade Model," Working Papers CEB 05-009.RS, ULB -- Universite Libre de Bruxelles.
    11. Paul Ormerod, 2010. "La crisis actual y la culpabilidad de la teoría macroeconómica," Revista de Economía Institucional, Universidad Externado de Colombia - Facultad de Economía, vol. 12(22), pages 111-128, January-J.
    12. Zhao, Zhibiao & Wu, Wei Biao, 2009. "Nonparametric inference of discretely sampled stable Lévy processes," Journal of Econometrics, Elsevier, vol. 153(1), pages 83-92, November.
    13. Barunik, Jozef & Vacha, Lukas, 2010. "Monte Carlo-based tail exponent estimator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4863-4874.
    14. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    15. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    16. Ben Klemens, 2013. "A Peer-based Model of Fat-tailed Outcomes," Papers 1304.0718, arXiv.org.
    17. Koutmos, Dimitrios, 2012. "An intertemporal capital asset pricing model with heterogeneous expectations," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(5), pages 1176-1187.
    18. Turvey, Calum G., 2001. "Random Walks And Fractal Structures In Agricultural Commodity Futures Prices," Working Papers 34151, University of Guelph, Department of Food, Agricultural and Resource Economics.
    19. Rodríguez, Mª Araceli, 2005. "Nueva Evidencia Empírica sobre las Turbulencias Cambiarias de la Peseta Española. 1989-1998/New Evidence about Turbulences on the Spanish Peseta. 1989-1998s," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 23, pages 207-230, Abril.
    20. Lombardi, Marco J. & Calzolari, Giorgio, 2009. "Indirect estimation of [alpha]-stable stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2298-2308, April.

    More about this item

    Keywords

    multifractal; scaling; exchange rate; stock index; non-linear group action;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D5 - Microeconomics - - General Equilibrium and Disequilibrium
    • D9 - Microeconomics - - Micro-Based Behavioral Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpge:9901003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.