IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0309012.html
   My bibliography  Save this paper

Optimal Arbitrage Trading

Author

Listed:
  • Michael Boguslavsky

    (ABN-AMRO Global Equity Derivatives)

  • Elena Boguslavskaya

    (University of Amsterdam)

Abstract

We consider the position management problem for an agent trading a mean- reverting asset. This problem arises in many statistical and fundamental arbitrage trading situations when the short-term returns on an asset are predictable but limited risk-bearing capacity does not allow to fully exploit this predictability. The model is rather simple; it does not require any inputs apart from the parameters of the price process and agent's relative risk aversion. However, the model reproduces some realistic patterns of traders' behaviour. We use the Ornstein-Uhlenbeck process to model the price process and consider a finite horizon power utility agent. The dynamic programming approach yields a non-linear PDE. It is solved explicitly, and simple formulas for the value function and the optimal trading strategy are obtained. We use Monte-Carlo simulation to check for the effects of parameter misspecification.

Suggested Citation

  • Michael Boguslavsky & Elena Boguslavskaya, 2003. "Optimal Arbitrage Trading," Finance 0309012, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0309012
    Note: Type of Document - pdf; prepared on IBM PC LaTeX; pages: 13; figures: included
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0309/0309012.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lakner, Peter, 1998. "Optimal trading strategy for an investor: the case of partial information," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 77-97, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Dandan & Wang, Huamao & Yang, Zhaojun, 2014. "Learning, pricing, timing and hedging of the option to invest for perpetual cash flows with idiosyncratic risk," Journal of Mathematical Economics, Elsevier, vol. 51(C), pages 1-11.
    2. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    3. Carmine De Franco & Johann Nicolle & Huyên Pham, 2019. "Dealing with Drift Uncertainty: A Bayesian Learning Approach," Risks, MDPI, vol. 7(1), pages 1-18, January.
    4. Huang, Jianhui & Wang, Guangchen & Wu, Zhen, 2010. "Optimal premium policy of an insurance firm: Full and partial information," Insurance: Mathematics and Economics, Elsevier, vol. 47(2), pages 208-215, October.
    5. Abdelali Gabih & Hakam Kondakji & Jorn Sass & Ralf Wunderlich, 2014. "Expert Opinions and Logarithmic Utility Maximization in a Market with Gaussian Drift," Papers 1402.6313, arXiv.org.
    6. Michele Longo & Alessandra Mainini, 2015. "Learning and Portfolio Decisions for HARA Investors," Papers 1502.02968, arXiv.org.
    7. Ahmed Belhadjayed & Grégoire Loeper & Frédéric Abergel, 2016. "Forecasting Trends With Asset Prices," Post-Print hal-01512431, HAL.
    8. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Sofiene El Aoud & Fr'ed'eric Abergel, 2015. "Performance analysis of the optimal strategy under partial information," Papers 1510.03596, arXiv.org.
    9. Christoph Knochenhauer & Alexander Merkel & Yufei Zhang, 2024. "Optimal Investment with Costly Expert Opinions," Papers 2409.11569, arXiv.org.
    10. Dalia Ibrahim & Frédéric Abergel, 2018. "Non-linear filtering and optimal investment under partial information for stochastic volatility models," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 311-346, June.
    11. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    12. Flavio Angelini & Katia Colaneri & Stefano Herzel & Marco Nicolosi, 2021. "Implicit incentives for fund managers with partial information," Computational Management Science, Springer, vol. 18(4), pages 539-561, October.
    13. Ahmed Bel Hadj Ayed & Gr'egoire Loeper & Fr'ed'eric Abergel, 2015. "Forecasting trends with asset prices," Papers 1504.03934, arXiv.org, revised Apr 2015.
    14. Nikolai Dokuchaev, 2015. "Optimal portfolio with unobservable market parameters and certainty equivalence principle," Papers 1502.02352, arXiv.org.
    15. Liang, Zhibin & Bayraktar, Erhan, 2014. "Optimal reinsurance and investment with unobservable claim size and intensity," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 156-166.
    16. Jörn Sass & Dorothee Westphal & Ralf Wunderlich, 2017. "Expert Opinions And Logarithmic Utility Maximization For Multivariate Stock Returns With Gaussian Drift," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-41, June.
    17. Abdelali Gabih & Hakam Kondakji & Ralf Wunderlich, 2018. "Asymptotic Filter Behavior for High-Frequency Expert Opinions in a Market with Gaussian Drift," Papers 1812.03453, arXiv.org, revised Mar 2020.
    18. Jorn Sass & Dorothee Westphal & Ralf Wunderlich, 2016. "Expert Opinions and Logarithmic Utility Maximization for Multivariate Stock Returns with Gaussian Drift," Papers 1601.08155, arXiv.org, revised Mar 2016.
    19. Zongxia Liang & Qi Ye, 2024. "Optimal information acquisition for eliminating estimation risk," Papers 2405.09339, arXiv.org.
    20. Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.

    More about this item

    Keywords

    arbitrage trading; mean-reverting process; stochastic optimal control;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0309012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.