IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0105002.html
   My bibliography  Save this paper

Asians and cash dividends: Exploiting symmetries in pricing theory

Author

Listed:
  • Jiri Hoogland

    (CWI, Amsterdam)

  • Dimitri Neumann

    (CWI, Amsterdam)

Abstract

In this article we present new results for the pricing of arithmetic Asian options within a Black-Scholes context. To derive these results we make extensive use of the local scale invariance that exists in the theory of contingent claim pricing. This allows us to derive, in a natural way, a simple PDE for the price of arithmetic Asians options. In the case of European average strike options, a proper choice of numeraire reduces the dimension of this PDE to one, leading to a PDE similar to the one derived by Rogers and Shi. We solve this PDE, finding a Laplace-transform representation for the price of average strike options, both seasoned and unseasoned. This extends the results of Geman and Yor, who discussed the case of average price options. Next we use symmetry arguments to show that prices of average strike and average price options can be expressed in terms of each other. Finally we show, again using symmetries, that plain vanilla options on stocks paying known cash dividends are closely related to arithmetic Asians, so that all the new techniques can be directly applied to this case.

Suggested Citation

  • Jiri Hoogland & Dimitri Neumann, 2001. "Asians and cash dividends: Exploiting symmetries in pricing theory," Finance 0105002, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0105002
    Note: Type of Document - Acrobat PDF; prepared on NT/LaTeX; to print on PostScript; pages: 18 ; figures: None.
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0105/0105002.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph Abate & Ward Whitt, 1995. "Numerical Inversion of Laplace Transforms of Probability Distributions," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 36-43, February.
    2. Michael Curran, 1994. "Valuing Asian and Portfolio Options by Conditioning on the Geometric Mean Price," Management Science, INFORMS, vol. 40(12), pages 1705-1711, December.
    3. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375, October.
    4. Jiri Hoogland & Dimitri Neumann, 1999. "Scale invariance and contingent claim pricing," Finance 9907002, University Library of Munich, Germany.
    5. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 377-389, September.
    6. Jiri Hoogland & Dimitri Neumann, 1999. "Scale invariance and contingent claim pricing II: Path-dependent contingent claims," Finance 9907003, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. K. Hoogland & C. D. D. Neumann & M. H. Vellekoop, 2003. "Symmetries In Jump-Diffusion Models With Applications In Option Pricing And Credit Risk," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 135-172.
    2. Eberlein, Ernst & Papapantoleon, Antonis, 2005. "Equivalence of floating and fixed strike Asian and lookback options," Stochastic Processes and their Applications, Elsevier, vol. 115(1), pages 31-40, January.
    3. Jiri Hoogland & Dimitri Neumann, 2001. "Tradable Schemes," Finance 0105003, University Library of Munich, Germany.
    4. Jan Vecer & Mingxin Xu, 2004. "Pricing Asian options in a semimartingale model," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 170-175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiri Hoogland & Dimitri Neumann, 2001. "Tradable Schemes," Finance 0105003, University Library of Munich, Germany.
    2. Boyle, Phelim & Potapchik, Alexander, 2008. "Prices and sensitivities of Asian options: A survey," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 189-211, February.
    3. Jianqiang Sun & Langnan Chen & Shiyin Li, 2013. "A Quasi‐Analytical Pricing Model for Arithmetic Asian Options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 33(12), pages 1143-1166, December.
    4. Jean-Yves Datey & Genevieve Gauthier & Jean-Guy Simonato, 2003. "The Performance of Analytical Approximations for the Computation of Asian Quanto-Basket Option Prices," Multinational Finance Journal, Multinational Finance Journal, vol. 7(1-2), pages 55-82, March-Jun.
    5. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    6. Leunglung Chan & Song-Ping Zhu, 2014. "An exact and explicit formula for pricing Asian options with regime switching," Papers 1407.5091, arXiv.org.
    7. Manuel Moreno & Javier F. Navas, 2008. "Australian Options," Australian Journal of Management, Australian School of Business, vol. 33(1), pages 69-93, June.
    8. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2018. "Most-Likely-Path In Asian Option Pricing Under Local Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-32, August.
    9. Keng‐Hsin Lo & Kehluh Wang & Ming‐Feng Hsu, 2008. "Pricing European Asian options with skewness and kurtosis in the underlying distribution," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(6), pages 598-616, June.
    10. Jaehyuk Choi, 2018. "Sum of all Black–Scholes–Merton models: An efficient pricing method for spread, basket, and Asian options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 627-644, June.
    11. Pingping Zeng & Yue Kuen Kwok, 2016. "Pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1375-1391, September.
    12. Jinke Zhou & Xiaolu Wang, 2008. "Accurate closed‐form approximation for pricing Asian and basket options," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 343-358, July.
    13. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    14. Jacques, Michel, 1997. "The Istanbul option: Where the standard European option becomes Asian," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 139-152, November.
    15. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    16. Louis-Pierre Arguin & Nien-Lin Liu & Tai-Ho Wang, 2017. "Most-likely-path in Asian option pricing under local volatility models," Papers 1706.02408, arXiv.org, revised Aug 2018.
    17. Dai, Min & Li, Peifan & Zhang, Jin E., 2010. "A lattice algorithm for pricing moving average barrier options," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 542-554, March.
    18. Sander Willems, 2018. "Asian Option Pricing with Orthogonal Polynomials," Papers 1802.01307, arXiv.org, revised Sep 2018.
    19. Tian-Shyr Dai & Yuh-Dauh Lyuu, 2002. "Efficient, exact algorithms for asian options with multiresolution lattices," Review of Derivatives Research, Springer, vol. 5(2), pages 181-203, May.
    20. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.

    More about this item

    Keywords

    contingent claim pricing; scale invariance; asian options; partial differential equation;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0105002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.