IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0502004.html
   My bibliography  Save this paper

Modeling and forecasting electricity loads: A comparison

Author

Listed:
  • Rafal Weron

    (Hugo Steinhaus Center)

  • Adam Misiorek

    (Institute of Power Systems Automation)

Abstract

In this paper we study two statistical approaches to load forecasting. Both of them model electricity load as a sum of two components – a deterministic (representing seasonalities) and a stochastic (representing noise). They differ in the choice of the seasonality reduction method. Model A utilizes differencing, while Model B uses a recently developed seasonal volatility technique. In both models the stochastic component is described by an ARMA time series. Models are tested on a time series of system-wide loads from the California power market and compared with the official forecast of the California System Operator (CAISO).

Suggested Citation

  • Rafal Weron & Adam Misiorek, 2005. "Modeling and forecasting electricity loads: A comparison," Econometrics 0502004, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpem:0502004
    Note: Type of Document - pdf; pages: 8. ”The European Electricity Market EEM-04”, Proceedings Volume, pp. 135-142
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0502/0502004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Smith, Michael, 2000. "Modeling and Short-term Forecasting of New South Wales Electricity System Load," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 465-478, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafal Weron & Adam Misiorek, 2005. "Forecasting Spot Electricity Prices With Time Series Models," Econometrics 0504001, University Library of Munich, Germany.
    2. Liebl, Dominik, 2010. "Modeling hourly Electricity Spot Market Prices as non stationary functional times series," MPRA Paper 25017, University Library of Munich, Germany.
    3. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    4. Janczura, Joanna & Weron, Rafal, 2010. "Goodness-of-fit testing for regime-switching models," MPRA Paper 22871, University Library of Munich, Germany.
    5. Montero, José M. & García-Centeno, Maria C. & Fernández-Avilés, Gema, 2011. "Modelling the Volatility of the Spanish Wholesale Electricity Spot Market. Asymmetric GARCH Models vs. Threshold ARSV model/Modelización de la volatilidad en el mercado eléctrico español. Modelos GARC," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 29, pages 597-616, Agosto.
    6. Vazquez, Miguel & Barquín, Julián, 2009. "A fundamental power price model with oligopolistic competition representation," MPRA Paper 15629, University Library of Munich, Germany.
    7. Joanna Janczura & Rafal Weron, 2011. "Black swans or dragon kings? A simple test for deviations from the power law," Papers 1102.3712, arXiv.org.
    8. Weron, Rafal, 2008. "Bezpieczeństwo elektroenergetyczne: Ryzyko > Zarządzanie ryzykiem > Bezpieczeństwo [Power security: Risk > Risk management > Security]," MPRA Paper 18786, University Library of Munich, Germany, revised 2008.
    9. Weron, Rafal & Janczura, Joanna, 2010. "Efficient estimation of Markov regime-switching models: An application to electricity wholesale market prices," MPRA Paper 26628, University Library of Munich, Germany.
    10. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    11. Janczura, Joanna & Weron, Rafal, 2009. "Regime-switching models for electricity spot prices: Introducing heteroskedastic base regime dynamics and shifted spike distributions," MPRA Paper 18784, University Library of Munich, Germany.
    12. Mauritzen, Johannes, 2010. "What happens when it's Windy in Denmark? An Empirical Analysis of Wind Power on Price Volatility in the Nordic Electricity Market," Discussion Papers 2010/18, Norwegian School of Economics, Department of Business and Management Science.
    13. Janczura, Joanna & Weron, Rafal, 2010. "An empirical comparison of alternate regime-switching models for electricity spot prices," Energy Economics, Elsevier, vol. 32(5), pages 1059-1073, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vaz, Lucélia Viviane & Filho, Getulio Borges da Silveira, 2017. "Functional Autoregressive Models: An Application to Brazilian Hourly Electricity Load," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(2), November.
    2. Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
    3. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    4. Smith, Michael Stanley & Shively, Thomas S., 2018. "Econometric modeling of regional electricity spot prices in the Australian market," Energy Economics, Elsevier, vol. 74(C), pages 886-903.
    5. Amaral, Luiz Felipe & Souza, Reinaldo Castro & Stevenson, Maxwell, 2008. "A smooth transition periodic autoregressive (STPAR) model for short-term load forecasting," International Journal of Forecasting, Elsevier, vol. 24(4), pages 603-615.
    6. Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
    7. Smith, Michael & Kohn, Robert, 2000. "Nonparametric seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 98(2), pages 257-281, October.
    8. Li, Zili & Washington, Simon P. & Zheng, Zuduo & Prato, Carlo G., 2023. "A Bayesian hierarchical approach to the joint modelling of Revealed and stated choices," Journal of choice modelling, Elsevier, vol. 47(C).
    9. Mestekemper, Thomas & Kauermann, Göran & Smith, Michael S., 2013. "A comparison of periodic autoregressive and dynamic factor models in intraday energy demand forecasting," International Journal of Forecasting, Elsevier, vol. 29(1), pages 1-12.
    10. Dariusz Fuksa, 2021. "A Method for Assessing the Impact of Changes in Demand for Coal on the Structure of Coal Grades Produced by Mines," Energies, MDPI, vol. 14(21), pages 1-34, November.
    11. Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de Estadística.
    12. Joanna Nowicka-Zagrajek & Rafal Weron, 2002. "Modeling electricity loads in California: ARMA models with hyperbolic noise," HSC Research Reports HSC/02/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    13. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    14. Kuangyu Wen & Wenbin Wu & Ximing Wu, 2023. "Electricity demand forecasting and risk management using Gaussian process model with error propagation," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 957-969, July.
    15. Smith, Michael Stanley, 2015. "Copula modelling of dependence in multivariate time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 815-833.
    16. Bakhat, Mohcine & Rosselló, Jaume, 2011. "Estimation of tourism-induced electricity consumption: The case study of Balearics Islands, Spain," Energy Economics, Elsevier, vol. 33(3), pages 437-444, May.
    17. Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024. "Bayesian forecasting in economics and finance: A modern review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
    18. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    19. Rong Chen & John L. Harris & Jun M. Liu & Lon-Mu Liu, 2006. "A semi-parametric time series approach in modeling hourly electricity loads," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 537-559.
    20. Nadja Klein & Michael Stanley Smith & David J. Nott, 2020. "Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices," Papers 2010.01844, arXiv.org, revised May 2021.

    More about this item

    Keywords

    Electricity; load forecasting; ARMA model; seasonal component;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0502004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.