IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0401004.html
   My bibliography  Save this paper

LM-Tests for Linearity Against Smooth Transition Alternatives: A Bootstrap Simulation Study

Author

Listed:
  • Jonathan B. Hill

    (Florida International University)

Abstract

The universal method for testing linearity against smooth transition autoregressive (STAR) alternatives is the linearization of the STAR model around the null nuisance parameter value, and performing F-tests on polynomial regressions in the spirit of the RESET test. Polynomial regressors, however, are poor proxies for the nonlinearity associated with STAR processes, and are not consistent (asymptotic power of one) against STAR alternatives, let alone general deviations from the null. Moreover, the most popularly used STAR forms of nonlinearity, exponential and logistic, are known to be exploitable for consistent conditional moment tests of functional form, cf. Bierens and Ploberger (1997). In this paper, pushing asymptotic theory aside, we compare the small sample performance of the standard polynomial test with an essentially ignored consistent conditional moment test of linear autoregression against smooth transition alternatives. In particular, we compute an LM sup-statistic and characterize the asymptotic p-value by Hansen's (1996) bootstrap method. In our simulations, we randomly select all STAR parameters in order not to bias experimental results based on the use of "safe", "interior" parameter values that exaggerate the smooth transition nonlinearity. Contrary to past studies, we find that the traditional polynomial regression method performs only moderately well, and that the LM sup-test out-performs the traditional test method, in particular for small samples and for LSTAR processes.

Suggested Citation

  • Jonathan B. Hill, 2004. "LM-Tests for Linearity Against Smooth Transition Alternatives: A Bootstrap Simulation Study," Econometrics 0401004, University Library of Munich, Germany, revised 05 Jul 2004.
  • Handle: RePEc:wpa:wuwpem:0401004
    Note: Type of Document - pdf; prepared on WinXP; pages: 13
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/0401/0401004.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dick van Dijk & Timo Terasvirta & Philip Hans Franses, 2002. "Smooth Transition Autoregressive Models — A Survey Of Recent Developments," Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 1-47.
    2. Chung-Ming Kuan, 2006. "Artificial Neural Networks," IEAS Working Paper : academic research 06-A010, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    3. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    4. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    5. Alvaro Escribano & Oscar Jorda, "undated". "Improved Testing And Specification Of Smooth Transition Regression Models," Department of Economics 97-26, California Davis - Department of Economics.
    6. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
    7. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    8. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    9. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    10. Skalin, Joakim, 1998. "Testing linearity against smooth transition autoregression using a parametric bootstrap," SSE/EFI Working Paper Series in Economics and Finance 276, Stockholm School of Economics, revised 13 Dec 1998.
    11. Holly, Alberto, 1982. "A Remark on Hausman's Specification Test," Econometrica, Econometric Society, vol. 50(3), pages 749-759, May.
    12. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan B. Hill, 2004. "Consistent Model Specification Tests Against Smooth Transition Alternatives," Econometrics 0402004, University Library of Munich, Germany, revised 05 Aug 2005.
    2. Jonathan B. Hill, 2004. "Consistent LM-Tests for Linearity Against Compound Smooth Transition Alternatives," Econometric Society 2004 North American Summer Meetings 42, Econometric Society.
    3. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    4. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    5. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    6. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    7. Yae Ji Jun & Jin Seo Cho, 2015. "Analyzing the Interrelationship of the Statistics for Testing Neglected Nonlinearity under the Null of Linearity," Working papers 2015rwp-78, Yonsei University, Yonsei Economics Research Institute.
    8. Baek, Yae In & Cho, Jin Seo & Phillips, Peter C.B., 2015. "Testing linearity using power transforms of regressors," Journal of Econometrics, Elsevier, vol. 187(1), pages 376-384.
    9. Chen, Xiaohong & Fan, Yanqin, 1999. "Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series," Journal of Econometrics, Elsevier, vol. 91(2), pages 373-401, August.
    10. Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
    11. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    12. Arie Preminger & Shinichi Sakata, 2007. "A model selection method for S-estimation," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 294-319, July.
    13. Chihwa Kao & Yongmiao Hong, 2004. "Detecting Neglected Nonlinearity in Dynamic Panel Data with Time-Varying Conditional Heteroskedasticity," Econometric Society 2004 Far Eastern Meetings 753, Econometric Society.
    14. Ralf Becker & Walter Enders & A. Stan Hurn, 2001. "Testing for Time Dependence in Parameters," Research Paper Series 58, Quantitative Finance Research Centre, University of Technology, Sydney.
    15. Lu, Xun & White, Habert, 2015. "Testing For Treatment Dependence Of Effects Of A Continuous Treatment," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1016-1053, October.
    16. repec:wyi:journl:002062 is not listed on IDEAS
    17. Antoine, Bertille & Lavergne, Pascal, 2023. "Identification-robust nonparametric inference in a linear IV model," Journal of Econometrics, Elsevier, vol. 235(1), pages 1-24.
    18. Munehisa Kasuya, 2003. "Regime-Switching Approach to Monetary Policy Effects: Empirical Studies using a Smooth Transition Vector Autoregressive Model," Bank of Japan Working Paper Series Research and Statistics D, Bank of Japan.
    19. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    20. Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
    21. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.

    More about this item

    Keywords

    Smooth transition AR; consistent conditional moment test; Lagrange Multiplier; bootstrap;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0401004. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.