IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/95-07-060.html
   My bibliography  Save this paper

Estimating Predictability: Redundancy and Surrogate Data Method

Author

Listed:
  • Milan Palus
  • L. Pecen
  • D. Pivka

Abstract

A method for estimating theoretical predictability of time series is presented, based on information-theoretic functionals---redundancies and surrogate data technique. The redundancy, designed for a chosen model and a prediction horizon, evaluates amount of information between a model input (e.g., lagged versions of the series) and a model output (i.e., a series lagged by the prediction horizon from the model input) in number of bits. This value, however, is influenced by a method and precision of redundancy estimation and therefore it is (a) normalized by maximum possible redundancy (given by the precision used), and (b) compared to the redundancies obtained from two types of the surrogate data in order to obtain reliable classification of a series as either unpredictable or predictable. The type of predictability (linear or nonlinear) and its level can be further evaluated. The method is demonstrated using a numerically generated time series as well as high-frequency foreigh exchange data and the theoretical predictability is compared to performance of a nonlinear predictor.

Suggested Citation

  • Milan Palus & L. Pecen & D. Pivka, 1995. "Estimating Predictability: Redundancy and Surrogate Data Method," Working Papers 95-07-060, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:95-07-060
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
    2. Milan Paluv s, 1994. "Testing for Nonlinearity in Weather Records," Working Papers 94-07-043, Santa Fe Institute.
    3. Dean Prichard & James Theiler, 1994. "Generating Surrogate Data for Time Series with Several Simultaneously Measured Variables," Working Papers 94-04-023, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Jiang & Xin Bao & Shaonan Hao & Hongtao Zhao & Xuyong Li & Xianing Wu, 2020. "Monthly Streamflow Forecasting Using ELM-IPSO Based on Phase Space Reconstruction," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(11), pages 3515-3531, September.
    2. Chong Hong & Beom Kim, 2011. "Mutual information and redundancy for categorical data," Statistical Papers, Springer, vol. 52(1), pages 17-31, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rasmus Fatum & Jesper Pedersen & Peter Norman Sørensen, 2010. "Are the Intraday Effects of Central Bank Intervention on Exchange Rate Spreads Asymmetric and State Dependent?," Discussion Papers 10-20, University of Copenhagen. Department of Economics.
    2. Gerhard, Frank & Hess, Dieter & Pohlmeier, Winfried, 1998. "What a Difference a Day Makes: On the Common Market Microstructure of Trading Days," CoFE Discussion Papers 98/01, University of Konstanz, Center of Finance and Econometrics (CoFE).
    3. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    4. Franke, Jurgen & Neumann, Michael H. & Stockis, Jean-Pierre, 2004. "Bootstrapping nonparametric estimators of the volatility function," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 189-218.
    5. repec:ipg:wpaper:2014-503 is not listed on IDEAS
    6. Kim, Suk-Joong, 2007. "Intraday evidence of efficacy of 1991-2004 Yen intervention by the Bank of Japan," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 17(4), pages 341-360, October.
    7. Luisa Bisaglia & Silvano Bordignon & Francesco Lisi, 2003. "k -Factor GARMA models for intraday volatility forecasting," Applied Economics Letters, Taylor & Francis Journals, vol. 10(4), pages 251-254.
    8. Darmoul Mokhtar & Nizar Harrathi, 2007. "Monetary information arrivals and intraday exchange rate volatility: a comparison of the GARCH and the EGARCH models," Post-Print halshs-00174996, HAL.
    9. Andrea Beltratti & Claudio Morana, 2006. "Net Inflows and Time-Varying Alphas: The Case of Hedge Funds," ICER Working Papers 30-2006, ICER - International Centre for Economic Research.
    10. Martin D. D. Evans, 2017. "FX Trading and Exchange Rate Dynamics," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 5, pages 189-245, World Scientific Publishing Co. Pte. Ltd..
    11. Ballocchi, Giuseppe & Dacorogna, Michel M. & Hopman, Carl M. & Muller, Ulrich A. & Olsen, Richard B., 1999. "The intraday multivariate structure of the Eurofutures markets," Journal of Empirical Finance, Elsevier, vol. 6(5), pages 479-513, December.
    12. Dominguez, Kathryn M.E., 2006. "When do central bank interventions influence intra-daily and longer-term exchange rate movements?," Journal of International Money and Finance, Elsevier, vol. 25(7), pages 1051-1071, November.
    13. Chang, Yuanchen & Taylor, Stephen J., 1998. "Intraday effects of foreign exchange intervention by the Bank of Japan1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 191-210, February.
    14. Paul Eitelman & Justin Vitanza, 2008. "A non-random walk revisited: short- and long-term memory in asset prices," International Finance Discussion Papers 956, Board of Governors of the Federal Reserve System (U.S.).
    15. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    16. Surgailis, Donatas & Teyssière, Gilles & Vaiciulis, Marijus, 2008. "The increment ratio statistic," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 510-541, March.
    17. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    18. Bollerslev, Tim & Kretschmer, Uta & Pigorsch, Christian & Tauchen, George, 2009. "A discrete-time model for daily S & P500 returns and realized variations: Jumps and leverage effects," Journal of Econometrics, Elsevier, vol. 150(2), pages 151-166, June.
    19. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    20. Ibrahim Chowdhury & Lucio Sarno, 2004. "Time‐Varying Volatility in the Foreign Exchange Market: New Evidence on its Persistence and on Currency Spillovers," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(5‐6), pages 759-793, June.
    21. Michael Melvin & Bettina Peiers, 1998. "Twice a day or continuously? Observation frequency and inference on foreign exchange volatility persistence," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 26(1), pages 44-53, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:95-07-060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.