IDEAS home Printed from https://ideas.repec.org/p/wop/safiwp/02-01-001.html
   My bibliography  Save this paper

Demand Storage, Market Liquidity, and Price Volatility

Author

Listed:
  • Marcus G. Daniels
  • J. Doyne Farmer
  • Giulia Iori
  • Eric Smith

Abstract

The limit order book is a device for storing demand and effecting trades that is the primary mechanism for price formation in most modern financial markets. We study the limit order book under a random process model of order flow, using simulations and an analytic treatment based on a master equation. We make testable predictions of the price diffusion rate, the depth of stored demand vs. price, the bid-ask spread, and the price impact. Our model provides an explanation for the empirically observed concave form of the price impact function.

Suggested Citation

  • Marcus G. Daniels & J. Doyne Farmer & Giulia Iori & Eric Smith, 2002. "Demand Storage, Market Liquidity, and Price Volatility," Working Papers 02-01-001, Santa Fe Institute.
  • Handle: RePEc:wop:safiwp:02-01-001
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    as
    1. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    2. Challet, Damien & Stinchcombe, Robin, 2001. "Analyzing and modeling 1+1d markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 300(1), pages 285-299.
    3. Gode, Dhananjay K & Sunder, Shyam, 1993. "Allocative Efficiency of Markets with Zero-Intelligence Traders: Market as a Partial Substitute for Individual Rationality," Journal of Political Economy, University of Chicago Press, vol. 101(1), pages 119-137, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Smith & J Doyne Farmer & Laszlo Gillemot & Supriya Krishnamurthy, 2003. "Statistical theory of the continuous double auction," Quantitative Finance, Taylor & Francis Journals, vol. 3(6), pages 481-514.
    2. Gaël Giraud & Céline Rochon, 2010. "Transition to Equilibrium in International Trades," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00657038, HAL.
    3. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Wei-Xing Zhou & Guo-Hua Mu & Si-Wei Chen & Didier Sornette, "undated". "Strategies used as Spectroscopy of Financial Markets Reveal New Stylized Facts," Working Papers ETH-RC-11-005, ETH Zurich, Chair of Systems Design.
    6. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.
    7. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frédéric Abergel, 2011. "Econophysics review: II. Agent-based models," Post-Print hal-00621059, HAL.
    8. Schinckus, C., 2013. "Between complexity of modelling and modelling of complexity: An essay on econophysics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3654-3665.
    9. Xinyang Li & Andreas Krause, 2011. "An evolutionary multi‐objective optimization of trading rules in call markets," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(1), pages 1-14, January.
    10. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    11. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    12. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    13. Bottazzi, Giulio & Dosi, Giovanni & Rebesco, Igor, 2005. "Institutional architectures and behavioral ecologies in the dynamics of financial markets," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 197-228, February.
    14. Berg, Joyce E. & Rietz, Thomas A., 2019. "Longshots, overconfidence and efficiency on the Iowa Electronic Market," International Journal of Forecasting, Elsevier, vol. 35(1), pages 271-287.
    15. Citera, Emanuele & Sau, Lino, 2019. "Complexity, Conventions and Instability: the role of monetary policy," Department of Economics and Statistics Cognetti de Martiis. Working Papers 201924, University of Turin.
    16. Daniel Sutter & Daniel J. Smith, 2017. "Coordination in disaster: Nonprice learning and the allocation of resources after natural disasters," The Review of Austrian Economics, Springer;Society for the Development of Austrian Economics, vol. 30(4), pages 469-492, December.
    17. Simon, Herbert A., 2000. "Barriers and bounds to Rationality," Structural Change and Economic Dynamics, Elsevier, vol. 11(1-2), pages 243-253, July.
    18. Lovric, M. & Kaymak, U. & Spronk, J., 2008. "A Conceptual Model of Investor Behavior," ERIM Report Series Research in Management ERS-2008-030-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    19. Makarewicz, Tomasz, 2021. "Traders, forecasters and financial instability: A model of individual learning of anchor-and-adjustment heuristics," Journal of Economic Behavior & Organization, Elsevier, vol. 190(C), pages 626-673.
    20. Robin Nicole & Aleksandra Alori'c & Peter Sollich, 2020. "Fragmentation in trader preferences among multiple markets: Market coexistence versus single market dominance," Papers 2012.04103, arXiv.org, revised Aug 2021.

    More about this item

    Keywords

    Financial markets; price formation; volatility; liquidity; master equation; random process; limit orders; dimensional analysis;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:02-01-001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/epstfus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.