IDEAS home Printed from https://ideas.repec.org/p/wop/pennhp/_077.html
   My bibliography  Save this paper

A Consistent Semiparametric Estimator of the Consumer Surplus Distribution

Author

Listed:
  • Jinyong Hahn
  • Andrew D. Foster

Abstract

No abstract is available for this item.

Suggested Citation

  • Jinyong Hahn & Andrew D. Foster, "undated". "A Consistent Semiparametric Estimator of the Consumer Surplus Distribution," Home Pages _077, University of Pennsylvania.
  • Handle: RePEc:wop:pennhp:_077
    as

    Download full text from publisher

    File URL: http://adfdell.pstc.brown.edu/papers/surp.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    2. Hausman, Jerry A, 1981. "Exact Consumer's Surplus and Deadweight Loss," American Economic Review, American Economic Association, vol. 71(4), pages 662-676, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hahn, Jinyong, 2001. "Consistent estimation of the random structural coefficient distribution from the linear simultaneous equations system," Economics Letters, Elsevier, vol. 73(2), pages 227-231, November.
    2. Sebastiaan Maes & Raghav Malhotra, 2023. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Nov 2023.
    3. Maes, Sebastiaan & Malhotra, Raghav, 2024. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," CRETA Online Discussion Paper Series 84, Centre for Research in Economic Theory and its Applications CRETA.
    4. McAleer, Michael & Medeiros, Marcelo C. & Slottje, Daniel, 2008. "A neural network demand system with heteroskedastic errors," Journal of Econometrics, Elsevier, vol. 147(2), pages 359-371, December.
    5. Zhan Gao & M. Hashem Pesaran, 2023. "Identification and estimation of categorical random coefficient models," Empirical Economics, Springer, vol. 64(6), pages 2543-2588, June.
    6. Donald J. Brown & Rosa L. Matzkin, 1998. "Estimation of Nonparametric Functions in Simultaneous Equations Models, with an Application to Consumer Demand," Cowles Foundation Discussion Papers 1175, Cowles Foundation for Research in Economics, Yale University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Li & Ju, Gaosheng & Zhu, Xi, 2015. "Nonparametric estimation of structural labor supply and exact welfare change under nonconvex piecewise-linear budget sets," Journal of Econometrics, Elsevier, vol. 188(2), pages 526-544.
    2. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    3. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    4. Auerbach, Alan J. & Hines, James Jr., 2002. "Taxation and economic efficiency," Handbook of Public Economics, in: A. J. Auerbach & M. Feldstein (ed.), Handbook of Public Economics, edition 1, volume 3, chapter 21, pages 1347-1421, Elsevier.
    5. Erik Brynjolfsson & Yu (Jeffrey) Hu & Michael D. Smith, 2003. "Consumer Surplus in the Digital Economy: Estimating the Value of Increased Product Variety at Online Booksellers," Management Science, INFORMS, vol. 49(11), pages 1580-1596, November.
    6. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    7. Hausman, Jerry, 1999. "Cellular Telephone, New Products, and the CPI," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(2), pages 188-194, April.
    8. Debopam Bhattacharya, 2015. "Nonparametric Welfare Analysis for Discrete Choice," Econometrica, Econometric Society, vol. 83, pages 617-649, March.
    9. Stefan Hoderlein & Anne Vanhems, 2018. "Estimating the distribution of welfare effects using quantiles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 52-72, January.
    10. Sebastiaan Maes & Raghav Malhotra, 2023. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Nov 2023.
    11. Jerry Hausman, 2002. "Sources of Bias and Solutions to Bias in the CPI," NBER Working Papers 9298, National Bureau of Economic Research, Inc.
    12. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    13. Jerry Hausman & Ephraim Leibtag, 2007. "Consumer benefits from increased competition in shopping outlets: Measuring the effect of Wal-Mart," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(7), pages 1157-1177.
    14. Zhan Gao & M. Hashem Pesaran, 2023. "Identification and estimation of categorical random coefficient models," Empirical Economics, Springer, vol. 64(6), pages 2543-2588, June.
    15. Jerry Hausman & Whitney K. Newey, 2014. "Individual Heterogeneity and Average Welfare," CeMMAP working papers 42/14, Institute for Fiscal Studies.
    16. C. Woo & J. Zarnikau & E. Kollman, 2012. "Exact welfare measurement for double-log demand with partial adjustment," Empirical Economics, Springer, vol. 42(1), pages 171-180, February.
    17. Maes, Sebastiaan & Malhotra, Raghav, 2024. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," CRETA Online Discussion Paper Series 84, Centre for Research in Economic Theory and its Applications CRETA.
    18. Zhen Sun & Yang Xie, 2013. "Error Analysis and Comparison of Two Algorithms Measuring Compensated Income," Computational Economics, Springer;Society for Computational Economics, vol. 42(4), pages 433-452, December.
    19. Fullerton, Don & Gan, Li, 2004. "A simulation-based welfare loss calculation for labor taxes with piecewise-linear budgets," Journal of Public Economics, Elsevier, vol. 88(11), pages 2339-2359, September.
    20. repec:wyi:journl:002107 is not listed on IDEAS
    21. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wop:pennhp:_077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thomas Krichel (email available below). General contact details of provider: https://edirc.repec.org/data/deupaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.