IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/893.html
   My bibliography  Save this paper

Estimating the Distribution of Welfare Effects Using Quantiles

Author

Listed:
  • Stefan Hoderlein

    (Boston College)

  • Anne Vanhems

    (University of Toulouse)

Abstract

This paper proposes a framework to model empirically welfare effects that are associated with a price change in a population of heterogeneous consumers which is similar to Hausman and Newey (1995), but allows for more general forms of heterogeneity. Individual demands are characterized by a general model which is nonparametric in the regressors, as well as monotonic in unobserved heterogeneity. In this setup, we first provide and discuss conditions under which the heterogeneous welfare effects are identified, and establish constructive identification. We then propose a sample counterpart estimator, and analyze its large sample properties. For both identification and estimation, we distinguish between the cases when regressors are exogenous and when they are endogenous. Finally, we apply all concepts to measuring the heterogeneous effect of a chance of gasoline price using US consumer data and find very substantial differences in individual effects across quantiles.

Suggested Citation

  • Stefan Hoderlein & Anne Vanhems, 2013. "Estimating the Distribution of Welfare Effects Using Quantiles," Boston College Working Papers in Economics 893, Boston College Department of Economics, revised 01 Feb 2016.
  • Handle: RePEc:boc:bocoec:893
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp893.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Laurens Cherchye & Bram De Rock & Frederic Vermeulen, 2007. "The Collective Model of Household Consumption: A Nonparametric Characterization," Econometrica, Econometric Society, vol. 75(2), pages 553-574, March.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. Alan P. Kirman, 1992. "Whom or What Does the Representative Individual Represent?," Journal of Economic Perspectives, American Economic Association, vol. 6(2), pages 117-136, Spring.
    4. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    5. Joseph G. Altonji & Rosa L. Matzkin, 2005. "Cross Section and Panel Data Estimators for Nonseparable Models with Endogenous Regressors," Econometrica, Econometric Society, vol. 73(4), pages 1053-1102, July.
    6. Hausman, Jerry A & Newey, Whitney K, 1995. "Nonparametric Estimation of Exact Consumers Surplus and Deadweight Loss," Econometrica, Econometric Society, vol. 63(6), pages 1445-1476, November.
    7. Willig, Robert D, 1976. "Consumer's Surplus without Apology," American Economic Review, American Economic Association, vol. 66(4), pages 589-597, September.
    8. Arthur Lewbel & Krishna Pendakur, 2009. "Tricks with Hicks: The EASI Demand System," American Economic Review, American Economic Association, vol. 99(3), pages 827-863, June.
    9. Vanhems, Anne, 2006. "Nonparametric Study Of Solutions Of Differential Equations," Econometric Theory, Cambridge University Press, vol. 22(1), pages 127-157, February.
    10. Rosa L. Matzkin, 2003. "Nonparametric Estimation of Nonadditive Random Functions," Econometrica, Econometric Society, vol. 71(5), pages 1339-1375, September.
    11. Anne Vanhems, 2010. "Non-parametric estimation of exact consumer surplus with endogeneity in price," Econometrics Journal, Royal Economic Society, vol. 13(3), pages 80-98, October.
    12. Adonis Yatchew & Joungyeo Angela No, 2001. "Household Gasoline Demand in Canada," Econometrica, Econometric Society, vol. 69(6), pages 1697-1709, November.
    13. Richard Blundell & Rosa Matzkin, 2010. "Conditions for the existence of control functions in nonseparable simultaneous equations models," CeMMAP working papers CWP28/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Vartia, Yrjo O, 1983. "Efficient Methods of Measuring Welfare Change and Compensated Income in Terms of Ordinary Demand Functions," Econometrica, Econometric Society, vol. 51(1), pages 79-98, January.
    15. Hausman, Jerry A, 1981. "Exact Consumer's Surplus and Deadweight Loss," American Economic Review, American Economic Association, vol. 71(4), pages 662-676, September.
    16. Richard Schmalensee & Thomas M. Stoker, 1999. "Household Gasoline Demand in the United States," Econometrica, Econometric Society, vol. 67(3), pages 645-662, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Bates & Seolah Kim, 2024. "Estimating the price elasticity of gasoline demand in correlated random coefficient models with endogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(4), pages 679-696, June.
    2. Richard Blundell & Joel Horowitz & Matthias Parey, 2022. "Estimation of a Heterogeneous Demand Function with Berkson Errors," The Review of Economics and Statistics, MIT Press, vol. 104(5), pages 877-889, December.
    3. Cherchye, Laurens & Demuynck, Thomas & Rock, Bram De, 2019. "Bounding counterfactual demand with unobserved heterogeneity and endogenous expenditures," Journal of Econometrics, Elsevier, vol. 211(2), pages 483-506.
    4. Sebastiaan Maes & Raghav Malhotra, 2023. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Nov 2023.
    5. Escanciano, Juan Carlos, 2023. "Irregular identification of structural models with nonparametric unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 106-127.
    6. Sam Cosaert & Thomas Demuynck, 2018. "Nonparametric Welfare and Demand Analysis with Unobserved Individual Heterogeneity," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 349-361, May.
    7. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2018. "Estimation of a nonseparable heterogenous demand function with shape restrictions and Berkson errors," CeMMAP working papers CWP67/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Lewbel & Krishna Pendakur, 2017. "Unobserved Preference Heterogeneity in Demand Using Generalized Random Coefficients," Journal of Political Economy, University of Chicago Press, vol. 125(4), pages 1100-1148.
    2. Xiaohong Chen & Timothy M. Christensen, 2015. "Optimal sup-norm rates, adaptivity and inference in nonparametric instrumental variables estimation," CeMMAP working papers 32/15, Institute for Fiscal Studies.
    3. Dette, Holger & Hoderlein, Stefan & Neumeyer, Natalie, 2016. "Testing multivariate economic restrictions using quantiles: The example of Slutsky negative semidefiniteness," Journal of Econometrics, Elsevier, vol. 191(1), pages 129-144.
    4. Xiaohong Chen & Timothy Christensen, 2013. "Optimal Sup-norm Rates, Adaptivity and Inference in Nonparametric Instrumental Variables Estimation," Cowles Foundation Discussion Papers 1923R, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    5. Richard Blundell & Joel L. Horowitz & Matthias Parey, 2013. "Nonparametric estimation of a heterogeneous demand function under the Slutsky inequality restriction," CeMMAP working papers 54/13, Institute for Fiscal Studies.
    6. Jerry A. Hausman & Whitney K. Newey, 2016. "Individual Heterogeneity and Average Welfare," Econometrica, Econometric Society, vol. 84, pages 1225-1248, May.
    7. Jerry Hausman & Whitney K. Newey, 2014. "Individual Heterogeneity and Average Welfare," CeMMAP working papers 42/14, Institute for Fiscal Studies.
    8. Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
    9. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    10. Debopam Bhattacharya, 2015. "Nonparametric Welfare Analysis for Discrete Choice," Econometrica, Econometric Society, vol. 83, pages 617-649, March.
    11. Sebastiaan Maes & Raghav Malhotra, 2023. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," Papers 2303.01231, arXiv.org, revised Nov 2023.
    12. Hubner, Stefan, 2023. "Identification of unobserved distribution factors and preferences in the collective household model," Journal of Econometrics, Elsevier, vol. 234(1), pages 301-326.
    13. Maes, Sebastiaan & Malhotra, Raghav, 2024. "Robust Hicksian Welfare Analysis under Individual Heterogeneity," CRETA Online Discussion Paper Series 84, Centre for Research in Economic Theory and its Applications CRETA.
    14. Ian Crawford & Matthew Polisson, 2015. "Demand analysis with partially observed prices," IFS Working Papers W15/16, Institute for Fiscal Studies.
    15. Gan, Li & Ju, Gaosheng & Zhu, Xi, 2015. "Nonparametric estimation of structural labor supply and exact welfare change under nonconvex piecewise-linear budget sets," Journal of Econometrics, Elsevier, vol. 188(2), pages 526-544.
    16. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    17. Kim, Kun Ho & Chao, Shih-Kang & Härdle, Wolfgang Karl, 2020. "Simultaneous Inference of the Partially Linear Model with a Multivariate Unknown Function," IRTG 1792 Discussion Papers 2020-008, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    18. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    19. Auerbach, Alan J. & Hines, James Jr., 2002. "Taxation and economic efficiency," Handbook of Public Economics, in: A. J. Auerbach & M. Feldstein (ed.), Handbook of Public Economics, edition 1, volume 3, chapter 21, pages 1347-1421, Elsevier.
    20. Schennach, Susanne & White, Halbert & Chalak, Karim, 2012. "Local indirect least squares and average marginal effects in nonseparable structural systems," Journal of Econometrics, Elsevier, vol. 166(2), pages 282-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.