IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa11p1406.html
   My bibliography  Save this paper

Urban Atlas, land use modelling and spatial metric techniques

Author

Listed:
  • Poulicos Prastacos
  • Nektarios Chrysoulakis

Abstract

Recently, through the GMES program of ESA the Urban Atlas dataset was released. The Urban Atlas is providing pan-European comparable land use and land cover data for Large Urban Zones with more than 100.000 inhabitants as defined by the Urban Audit. The production of the various datasets started in 2009 and is expected to be completed by the end of 2011. At presently datasets for more than 150 urban areas have been released. Most importantly the datasets can be freely downloaded and distributed. The availability of such a huge dataset produced with the same standards will have a major impact on the development of urban transportation models and the comparative analysis of the urban areas across Europe. Combined with the data sets that will be developed from the various Census of population it could become the basis for the application of various models in the next ten years. In this paper two major themes are discussed. First, how the current state of art in urban modeling (behavioral, cellular automata and statistical) can use these models, what type of additional data might be needed and how these datasets can be combined with other data for developing land use transportation models. Second, spatial metric techniques are used to define indicators for the landscape that could be used for comparing the structure and the form of the various cities. In the last ten years there has been an increasing interest in applying spatial metric techniques analysis of urban environments, to examine unique spatial components of intra-and inter-city urban structure, as well as, the dynamics of change. The landscape perspective assumes abrupt transitions between individual patches that result in distinct edges. These measures provide a link between the detailed spatial structures that result from urban change processes. The spatial metric indicators were developed for several cities and are then used for a comparative study of city typologies and urban fabric characteristics.

Suggested Citation

  • Poulicos Prastacos & Nektarios Chrysoulakis, 2011. "Urban Atlas, land use modelling and spatial metric techniques," ERSA conference papers ersa11p1406, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa11p1406
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/e110830aFinal01406.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Waddell, Paul & Ulfarsson, Gudmundur F. & Franklin, Joel P. & Lobb, John, 2007. "Incorporating land use in metropolitan transportation planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 382-410, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kukulska-Kozieł, Anita & Szylar, Marta & Cegielska, Katarzyna & Noszczyk, Tomasz & Hernik, Józef & Gawroński, Krzysztof & Dixon-Gough, Robert & Jombach, Sándor & Valánszki, István & Filepné Kovács, Kr, 2019. "Towards three decades of spatial development transformation in two contrasting post-Soviet cities—Kraków and Budapest," Land Use Policy, Elsevier, vol. 85(C), pages 328-339.
    2. Gargiulo, Carmela & Battarra, Rosaria & Tremiterra, Maria Rosa, 2020. "Coastal areas and climate change: A decision support tool for implementing adaptation measures," Land Use Policy, Elsevier, vol. 91(C).
    3. Isra Hyka & Artan Hysa & Sokol Dervishi & Marijana Kapovic Solomun & Alban Kuriqi & Dinesh Kumar Vishwakarma & Paul Sestras, 2022. "Spatiotemporal Dynamics of Landscape Transformation in Western Balkans’ Metropolitan Areas," Land, MDPI, vol. 11(11), pages 1-23, October.
    4. Ondrej Micek & Jan Feranec & Premysl Stych, 2020. "Land Use/Land Cover Data of the Urban Atlas and the Cadastre of Real Estate: An Evaluation Study in the Prague Metropolitan Region," Land, MDPI, vol. 9(5), pages 1-24, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eliasson, Jonas & Savemark, Christian & Franklin, Joel, 2020. "The impact of land use effects in infrastructure appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 262-276.
    2. Stevens, Nicholas & Baker, Douglas & Freestone, Robert, 2010. "Airports in their urban settings: towards a conceptual model of interfaces in the Australian context," Journal of Transport Geography, Elsevier, vol. 18(2), pages 276-284.
    3. Brian Lee & Paul Waddell, 2010. "Residential mobility and location choice: a nested logit model with sampling of alternatives," Transportation, Springer, vol. 37(4), pages 587-601, July.
    4. Natalie Wiseman & Zachary Patterson, 2016. "Testing block subdivision algorithms on block designs," Journal of Geographical Systems, Springer, vol. 18(1), pages 17-43, January.
    5. Niu, Fangqu & Li, Jun, 2018. "Modeling the population and industry distribution impacts of urban land use policies in Beijing," Land Use Policy, Elsevier, vol. 70(C), pages 347-359.
    6. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    7. Waddell, Paul & Boeing, Geoff & Gardner, Max & Porter, Emily, 2018. "An Integrated Pipeline Architecture for Modeling Urban Land Use, Travel Demand, and Traffic Assignment," SocArXiv 74zaw, Center for Open Science.
    8. Su, Hailong & Wu, Jia Hao & Tan, Yinghui & Bao, Yuanqiu & Song, Bing & He, Xinghua, 2014. "A land use and transportation integration method for land use allocation and transportation strategies in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 329-353.
    9. Mörtberg, Ulla & Goldenberg, Romain & Kalantari, Zahra & Kordas, Olga & Deal, Brian & Balfors, Berit & Cvetkovic, Vladimir, 2017. "Integrating ecosystem services in the assessment of urban energy trajectories – A study of the Stockholm Region," Energy Policy, Elsevier, vol. 100(C), pages 338-349.
    10. Wood, Liza & Scott, Tyler A., 2022. "Transportation agencies as consumers and producers of science: The case of state, regional, and county transportation agencies in California," Transport Policy, Elsevier, vol. 128(C), pages 153-165.
    11. Canca, David & Zarzo, Alejandro & Algaba, Encarnación & Barrena, Eva, 2013. "Macroscopic attraction-based simulation of pedestrian mobility: A dynamic individual route-choice approach," European Journal of Operational Research, Elsevier, vol. 231(2), pages 428-442.
    12. Soria-Lara, Julio A. & Aguilera-Benavente, Francisco & Arranz-López, Aldo, 2016. "Integrating land use and transport practice through spatial metrics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 330-345.
    13. Nimrod Serok & Orr Levy & Shlomo Havlin & Efrat Blumenfeld-Lieberthal, 2019. "Unveiling the inter-relations between the urban streets network and its dynamic traffic flows: Planning implication," Environment and Planning B, , vol. 46(7), pages 1362-1376, September.
    14. Sakai, Takanori & Kawamura, Kazuya & Hyodo, Tetsuro, 2019. "Evaluation of the spatial pattern of logistics facilities using urban logistics land-use and traffic simulator," Journal of Transport Geography, Elsevier, vol. 74(C), pages 145-160.
    15. Zahra Kalantari & Sara Khoshkar & Helena Falk & Vladimir Cvetkovic & Ulla Mörtberg, 2017. "Accessibility of Water-Related Cultural Ecosystem Services through Public Transport—A Model for Planning Support in the Stockholm Region," Sustainability, MDPI, vol. 9(3), pages 1-16, February.
    16. Marko Kryvobokov & Aurélie Mercier & Alain Bonnafous & Dominique Bouf, 2013. "Simulating housing prices with UrbanSim: predictive capacity and sensitivity analysis," Letters in Spatial and Resource Sciences, Springer, vol. 6(1), pages 31-44, March.
    17. Sevcíková, Hana & Raftery, Adrian E. & Waddell, Paul A., 2011. "Uncertain benefits: Application of Bayesian melding to the Alaskan Way Viaduct in Seattle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 540-553, July.
    18. Ying Jin, 2011. "What are the key effects of road pricing upon an integral city region? The case of the London conurbation," ERSA conference papers ersa10p1482, European Regional Science Association.
    19. Chorus, Caspar G. & de Jong, Gerard C., 2011. "Modeling experienced accessibility for utility-maximizers and regret-minimizers," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1155-1162.
    20. Ibeas, Ángel & Cordera, Ruben & dell’Olio, Luigi & Coppola, Pierluigi & Dominguez, Alberto, 2012. "Modelling transport and real-estate values interactions in urban systems," Journal of Transport Geography, Elsevier, vol. 24(C), pages 370-382.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa11p1406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.