IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa11p1147.html
   My bibliography  Save this paper

Parameter spaces for stationary DGPs in spatial econometric modelling

Author

Listed:
  • Matthias Koch

Abstract

Unlike the time series literature the spatial econometric literature has not really dealt with the issue of the parameter space. This paper shows that current parameter space concepts for spatial econometric DGPs are inadequate. It proves that the parameter space proposed by Kelejian and Prucha 2008 can result in nonstationary DGPs, while the parameter space proposed by Lee and Liu 2010 can be too restrictive in applied cases. Furthermore it is discussed that the practice of row standardizing lacks a mathematical foundation. Due to these problems concerning the current parameter space consepts, this paper provides a new de…nition for the spatial econometric parameter space. It is able to show which assumptions are necessary to give row standardizing the needed mathematical foundation. Finally two additional applications for the new parameter space de…nition concerning models with group interaction and panels with fixed cross section sample size are provided. Both applications result in parameter spaces that are substantially larger than the ones the literature would so far considered to be stationary.

Suggested Citation

  • Matthias Koch, 2011. "Parameter spaces for stationary DGPs in spatial econometric modelling," ERSA conference papers ersa11p1147, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa11p1147
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa11/e110830aFinal01147.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    2. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    3. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    4. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    5. Lee, Lung-fei & Liu, Xiaodong, 2010. "Efficient Gmm Estimation Of High Order Spatial Autoregressive Models With Autoregressive Disturbances," Econometric Theory, Cambridge University Press, vol. 26(1), pages 187-230, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    2. Badi H. Baltagi & Peter H. Egger & Michaela Kesina, 2022. "Bayesian estimation of multivariate panel probits with higher‐order network interdependence and an application to firms' global market participation in Guangdong," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1356-1378, November.
    3. Harald Badinger & Peter Egger, 2013. "Estimation and testing of higher-order spatial autoregressive panel data error component models," Journal of Geographical Systems, Springer, vol. 15(4), pages 453-489, October.
    4. Liu, Shew Fan & Yang, Zhenlin, 2015. "Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and nonnormality," Regional Science and Urban Economics, Elsevier, vol. 52(C), pages 50-70.
    5. Simon K. C. Cheung & Tommy K. Y. Cheung, 2022. "Mixed membership nearest neighbor model with feature difference," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1578-1594, December.
    6. Harald Badinger & Peter Egger, 2015. "Fixed Effects and Random Effects Estimation of Higher-order Spatial Autoregressive Models with Spatial Autoregressive and Heteroscedastic Disturbances," Spatial Economic Analysis, Taylor & Francis Journals, vol. 10(1), pages 11-35, March.
    7. Roger Bivand & Giovanni Millo & Gianfranco Piras, 2021. "A Review of Software for Spatial Econometrics in R," Mathematics, MDPI, vol. 9(11), pages 1-40, June.
    8. Elhorst, J. Paul & Lacombe, Donald J. & Piras, Gianfranco, 2012. "On model specification and parameter space definitions in higher order spatial econometric models," Regional Science and Urban Economics, Elsevier, vol. 42(1-2), pages 211-220.
    9. Shew Fan Liu & Zhenlin Yang, 2015. "Asymptotic Distribution and Finite Sample Bias Correction of QML Estimators for Spatial Error Dependence Model," Econometrics, MDPI, vol. 3(2), pages 1-36, May.
    10. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    11. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    12. Ariane Amin & Johanna Choumert, 2015. "Development and biodiversity conservation in Sub-Saharan Africa: A spatial analysis," Economics Bulletin, AccessEcon, vol. 35(1), pages 729-744.
    13. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    14. Borsky, Stefan & Kalkschmied, Katja, 2019. "Corruption in space: A closer look at the world's subnations," European Journal of Political Economy, Elsevier, vol. 59(C), pages 400-422.
    15. Gupta, Abhimanyu, 2019. "Estimation Of Spatial Autoregressions With Stochastic Weight Matrices," Econometric Theory, Cambridge University Press, vol. 35(2), pages 417-463, April.
    16. Álvarez, Inmaculada C. & Barbero, Javier & Zofío, José L., 2017. "A Panel Data Toolbox for MATLAB," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i06).
    17. Philipp Otto & Wolfgang Schmid, 2018. "Spatiotemporal analysis of German real-estate prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(1), pages 41-72, January.
    18. Liu, Xiaodong & Saraiva, Paulo, 2015. "GMM estimation of SAR models with endogenous regressors," Regional Science and Urban Economics, Elsevier, vol. 55(C), pages 68-79.
    19. Haller, Peter & Heuermann, Daniel F., 2016. "Job search and hiring in local labor markets: Spillovers in regional matching functions," Regional Science and Urban Economics, Elsevier, vol. 60(C), pages 125-138.
    20. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa11p1147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.