IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa05p750.html
   My bibliography  Save this paper

Further Exposition Of The Value Of Reliability

Author

Listed:
  • Richard Batley

Abstract

As the demands placed on transport systems have increased relative to extensions in supply, problems of network unreliability have become ever more prevalent. The response of some transport users has been to accommodate expectations of unreliability in their decision-making, particularly through their trip scheduling. In the analysis of trip scheduling, Small’s (1982) approach has received considerable support. Small extends the microeconomic theory of time allocation (e.g. Becker, 1965; De Serpa, 1971), accounting for scheduling constraints in the specification of both utility and its associated constraints. Small makes operational the theory by means of the random utility model (RUM). This involves a process of converting the continuous departure time variable into discrete departure time segments, specifying the utility of each departure time segment as a function of several components (specifically journey time, schedule delay and the penalty of late arrival), and adopting particular distributional assumptions concerning the random error terms of contiguous departure time segments (whilst his 1982 paper assumes IID, Small’s 1987 paper considers a more complex pattern of covariance). A fundamental limitation of Small’s approach is that individuals make choices under certainty, an assumption that is clearly unrealistic in the context of urban travel choice. The response of microeconomic theory to such challenge is to reformulate the objective problem from the maximisation of utility, to one of maximising expected utility, with particular reference to the works of von Neumann & Morgenstern (1947) and Savage (1954). Bates et al. (2001) apply this extension to departure time choice, but specify choice as being over continuous time; the latter carries the advantage of simplifying some of the calculations of optimal departure time. Moreover Bates et al. offer account of departure time choice under uncertainty, but retain a deterministic representation. Batley & Daly (2004) develop ideas further by reconciling the analyses of Small (1982) and Bates et al. Drawing on early contributions to the RUM literature by Marschak et al. (1963), Batley and Daly propose a probabilistic model of departure time choice under uncertainty, based on an objective function of random expected utility maximisation. Despite this progression in the generality and sophistication of methods, significant challenges to the normative validity of RUM and transport network models remain. Of increasing prominence in transport research, is the conjecture that expected utility maximisation may represent an inappropriate objective of choice under uncertainty. Significant evidence for this conjecture exists, and a variety of alternative objectives proposed instead; Kahneman & Tversky (2000) offer a useful compendium of such papers. With regards to these alternatives, Kahneman & Tversky’s (1979) own Prospect Theory commands considerable support as a theoretical panacea for choice under uncertainty. This theory distinguishes between two phases in the choice process - editing and evaluation. Editing may involve several stages, so-called ‘coding’, ‘combination’, ‘cancellation’, ‘simplification’ and ‘rejection of dominated alternatives’. Evaluation involves a value function that is defined on deviations from some reference point, and is characterised by concavity for gains and convexity for losses, with the function being steeper for gains than for losses. The present paper begins by formalising the earlier ideas of Batley and Daly (2004); the paper thus presents a theoretical exposition of a random expected utility model of departure time choice. The workings of the model are then illustrated by means of numerical example. The scope of the analysis is subsequently widened to consider the possibility of divergence from the objective of expected utility maximisation. An interesting feature of this discussion is consideration of the relationship between Prospect Theory and a generalised representation of the random expected utility model. In considering this relationship, the paper draws on Batley & Daly’s (2003) investigation of the equivalence between RUM and elimination-by-aspects (Tversky, 1972); the latter representing one example of a possible ‘editing’ model within Prospect Theory. Again, the extended model is illustrated by example.

Suggested Citation

  • Richard Batley, 2005. "Further Exposition Of The Value Of Reliability," ERSA conference papers ersa05p750, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa05p750
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa05/papers/750.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vickrey, William S, 1969. "Congestion Theory and Transport Investment," American Economic Review, American Economic Association, vol. 59(2), pages 251-260, May.
    2. Small, Kenneth A, 1982. "The Scheduling of Consumer Activities: Work Trips," American Economic Review, American Economic Association, vol. 72(3), pages 467-479, June.
    3. Bates, John & Polak, John & Jones, Peter & Cook, Andrew, 0. "The valuation of reliability for personal travel," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 37(2-3), pages 191-229, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Börjesson, Maria & Eliasson, Jonas & Franklin, Joel, 2012. "Valuations of travel time variability in scheduling versus mean-variance models," Working papers in Transport Economics 2012:2, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    2. Xiao, Yu & Fukuda, Daisuke, 2015. "On the cost of misperceived travel time variability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 96-112.
    3. Carrion, Carlos & Levinson, David, 2012. "Value of travel time reliability: A review of current evidence," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 720-741.
    4. Fosgerau, Mogens & Engelson, Leonid, 2011. "The value of travel time variance," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 1-8, January.
    5. Fosgerau, Mogens & Engelson, Leonid & Franklin, Joel P., 2014. "Commuting for meetings," Journal of Urban Economics, Elsevier, vol. 81(C), pages 104-113.
    6. Soriguera, Francesc, 2014. "On the value of highway travel time information systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 294-310.
    7. Nicolas Coulombel & André de Palma, 2014. "The marginal social cost of travel time variability," Post-Print hal-01100105, HAL.
    8. Yin-Yen Tseng & Piet Rietveld & Erik Verhoef, 2012. "Unreliable trains and induced rescheduling: implications for cost-benefit analysis," Transportation, Springer, vol. 39(2), pages 387-407, March.
    9. Wang, Qian & Sundberg, Marcus & Karlström, Anders, 2013. "Scheduling choices under rank dependent utility maximization," Working papers in Transport Economics 2013:16, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    10. Engelson, Leonid & Fosgerau, Mogens, 2011. "Additive measures of travel time variability," Transportation Research Part B: Methodological, Elsevier, vol. 45(10), pages 1560-1571.
    11. Jiang, Meilan & Morikawa, Takayuki, 2004. "Theoretical analysis on the variation of value of travel time savings," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(8), pages 551-571, October.
    12. Hjorth, Katrine & Börjesson, Maria & Engelson, Leonid & Fosgerau, Mogens, 2015. "Estimating exponential scheduling preferences," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 230-251.
    13. Fosgerau, Mogens & Karlström, Anders, 2010. "The value of reliability," Transportation Research Part B: Methodological, Elsevier, vol. 44(1), pages 38-49, January.
    14. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    15. Nicolas Coulombel & André De Palma, 2014. "Variability of Travel Time, Congestion, and the Cost of Travel," Mathematical Population Studies, Taylor & Francis Journals, vol. 21(4), pages 220-242, December.
    16. de Jong, Gerard C. & Bliemer, Michiel C.J., 2015. "On including travel time reliability of road traffic in appraisal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 73(C), pages 80-95.
    17. Raux, Charles & Souche, Stéphanie & Pons, Damien, 2012. "The efficiency of congestion charging: Some lessons from cost–benefit analyses," Research in Transportation Economics, Elsevier, vol. 36(1), pages 85-92.
    18. Abegaz, Dereje & Hjorth, Katrine & Rich, Jeppe, 2017. "Testing the slope model of scheduling preferences on stated preference data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 409-436.
    19. Jenelius, Erik, 2012. "The value of travel time variability with trip chains, flexible scheduling and correlated travel times," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 762-780.
    20. Kouwenhoven, Marco & de Jong, Gerard C. & Koster, Paul & van den Berg, Vincent A.C. & Verhoef, Erik T. & Bates, John & Warffemius, Pim M.J., 2014. "New values of time and reliability in passenger transport in The Netherlands," Research in Transportation Economics, Elsevier, vol. 47(C), pages 37-49.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa05p750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.