On long memory behaviour and predictability of financial markets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Malliaropulos, Dimitrios & Priestley, Richard, 1999. "Mean reversion in Southeast Asian stock markets," Journal of Empirical Finance, Elsevier, vol. 6(4), pages 355-384, October.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Grossman, Sanford J & Stiglitz, Joseph E, 1980.
"On the Impossibility of Informationally Efficient Markets,"
American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
- Sanford J Grossman & Joseph E Stiglitz, 1997. "On the Impossibility of Informationally Efficient Markets," Levine's Working Paper Archive 1908, David K. Levine.
- Andersen, Torben G & Bollerslev, Tim, 1997.
"Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns,"
Journal of Finance, American Finance Association, vol. 52(3), pages 975-1005, July.
- Torben G. Andersen & Tim Bollerslev, 1996. "Heterogeneous Information Arrivals and Return Volatility Dynamics: Uncovering the Long-Run in High Frequency Returns," NBER Working Papers 5752, National Bureau of Economic Research, Inc.
- Sandeep Patel & Asani Sarkar, 1998. "Stock market crises in developed and emerging markets," Research Paper 9809, Federal Reserve Bank of New York.
- Lo, Andrew W, 1991.
"Long-Term Memory in Stock Market Prices,"
Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
- Lo, Andrew W. (Andrew Wen-Chuan), 1989. "Long-term memory in stock market prices," Working papers 3014-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Andrew W. Lo, 1989. "Long-term Memory in Stock Market Prices," NBER Working Papers 2984, National Bureau of Economic Research, Inc.
- Tom Doan, "undated". "RSSTATISTIC: RATS procedure to compute R/S Statistic (classical or Lo's modified)," Statistical Software Components RTS00191, Boston College Department of Economics.
- Bollerslev, Tim & Wright, Jonathan H., 2000. "Semiparametric estimation of long-memory volatility dependencies: The role of high-frequency data," Journal of Econometrics, Elsevier, vol. 98(1), pages 81-106, September.
- R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Fujii, Eiji, 2002. "Exchange Rate and Price Adjustments in the Aftermath of the Asian Crisis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 7(1), pages 1-14, January.
- MacKinnon, James G, 1994.
"Approximate Asymptotic Distribution Functions for Unit-Root and Cointegration Tests,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 12(2), pages 167-176, April.
- James G. MacKinnon, 1992. "Approximate Asymptotic Distribution Functions for Unit Roots and Cointegration Tests," Working Paper 861, Economics Department, Queen's University.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992.
"Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,"
Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
- Brock, W. & Lakonishok, J. & Lebaron, B., 1991. "Simple Technical Trading Rules And The Stochastic Properties Of Stock Returns," Working papers 90-22, Wisconsin Madison - Social Systems.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Vo, Long H. & Roberts, Leigh, 2014. "On long memory behaviour and predictability of financial markets," Working Paper Series 3361, Victoria University of Wellington, School of Economics and Finance.
- Jonathan Dark, 2004. "Long memory in the volatility of the Australian All Ordinaries Index and the Share Price Index futures," Monash Econometrics and Business Statistics Working Papers 5/04, Monash University, Department of Econometrics and Business Statistics.
- Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
- Avishek Bhandari & Bandi Kamaiah, 2021. "Long Memory and Fractality Among Global Equity Markets: a Multivariate Wavelet Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 23-37, March.
- Perron, Pierre & Qu, Zhongjun, 2010.
"Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
- Pierre Perron & Zhongjun Qu, 2008. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Boston University - Department of Economics - Working Papers Series wp2008-004, Boston University - Department of Economics.
- Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
- Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
- Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
- Eduardo Rossi, 2010. "Univariate GARCH models: a survey (in Russian)," Quantile, Quantile, issue 8, pages 1-67, July.
- Proietti, Tommaso, 2014.
"Exponential Smoothing, Long Memory and Volatility Prediction,"
MPRA Paper
57230, University Library of Munich, Germany.
- Tommaso Proietti, 2015. "Exponential Smoothing, Long Memory and Volatility Prediction," CREATES Research Papers 2015-51, Department of Economics and Business Economics, Aarhus University.
- Tommaso Proietti, 2014. "Exponential Smoothing, Long Memory and Volatility Prediction," CEIS Research Paper 319, Tor Vergata University, CEIS, revised 30 Jul 2014.
- Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, January.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- Evans, Kevin P. & Speight, Alan E.H., 2010. "Intraday periodicity, calendar and announcement effects in Euro exchange rate volatility," Research in International Business and Finance, Elsevier, vol. 24(1), pages 82-101, January.
- González-Pla, Francisco & Lovreta, Lidija, 2019. "Persistence in firm’s asset and equity volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
- Jonathan Wright, 2002.
"Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
- Jonathan H. Wright, 2000. "Log-periodogram estimation of long memory volatility dependencies with conditionally heavy tailed returns," International Finance Discussion Papers 685, Board of Governors of the Federal Reserve System (U.S.).
- Long Hai Vo & Duc Hong Vo, 2019. "Application of Wavelet-Based Maximum Likelihood Estimator in Measuring Market Risk for Fossil Fuel," Sustainability, MDPI, vol. 11(10), pages 1-19, May.
- Assaf, A., 2006. "Dependence and mean reversion in stock prices: The case of the MENA region," Research in International Business and Finance, Elsevier, vol. 20(3), pages 286-304, September.
- Bollerslev, Tim, 2001. "Financial econometrics: Past developments and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 41-51, January.
- Bhardwaj, Geetesh & Swanson, Norman R., 2006.
"An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
- Geetesh Bhardwaj & Norman Swanson, 2004. "An Empirical Investigation of the Usefulness of ARFIMA Models for Predicting Macroeconomic and Financial Time Series," Departmental Working Papers 200422, Rutgers University, Department of Economics.
More about this item
Keywords
Hurst index; Long memory; Market efficiency; Rescaled range analysis; Trading system; High-frequency trading;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vuw:vuwecf:18828. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library Technology Services (email available below). General contact details of provider: https://edirc.repec.org/data/egvuwnz.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.