IDEAS home Printed from https://ideas.repec.org/p/ver/wpaper/19-2019.html
   My bibliography  Save this paper

Multiple Yield Curve Modelling with CBI Processes

Author

Listed:
  • Claudio Fontana

    (Department of Mathematics “Tullio Levi Civita”, University of Padova)

  • Alessandro Gnoatto

    (Department of Economics (University of Verona))

  • Guillaume Szulda

    (Laboratoire de Probabilités, Statistique et Mode ́lisation (LPSM), Paris Diderot University)

Abstract

We develop a modelling framework for multiple yield curves driven by continuous-state branching processes with immigration (CBI processes). Exploiting the self-exciting behavior of CBI jump processes, this approach can reproduce the relevant empirical features of spreads between different interbank rates. We provide a complete analytical framework, including a detailed study of discounted exponential moments of CBI processes. The proposed framework yields explicit valuation formulae for all linear interest rate derivatives as well as semi-closed formulae for non- linear derivatives via Fourier techniques and quantization. We show that a simple specification of the model can be successfully calibrated to market data.

Suggested Citation

  • Claudio Fontana & Alessandro Gnoatto & Guillaume Szulda, 2019. "Multiple Yield Curve Modelling with CBI Processes," Working Papers 19/2019, University of Verona, Department of Economics.
  • Handle: RePEc:ver:wpaper:19/2019
    as

    Download full text from publisher

    File URL: http://dse.univr.it/home/workingpapers/wp2019n19.pdf
    File Function: First version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2018. "Multiple curve L\'evy forward price model allowing for negative interest rates," Papers 1805.02605, arXiv.org.
    2. Damir Filipovic, 2001. "A general characterization of one factor affine term structure models," Finance and Stochastics, Springer, vol. 5(3), pages 389-412.
    3. Anna Maria Gambaro & Ruggero Caldana & Gianluca Fusai, 2017. "Approximate pricing of swaptions in affine and quadratic models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1325-1345, September.
    4. Damiano Brigo & Fabio Mercurio, 2001. "A deterministic-shift extension of analytically-tractable and time-homogeneous short-rate models," Finance and Stochastics, Springer, vol. 5(3), pages 369-387.
    5. Stéphane Crépey & Raphaël Douady, 2013. "Lois: credit and liquidity," Post-Print hal-01477998, HAL.
    6. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    7. Giorgia Callegaro & Lucio Fiorin & Martino Grasselli, 2019. "Quantization meets Fourier: a new technology for pricing options," Annals of Operations Research, Springer, vol. 282(1), pages 59-86, November.
    8. Filipović, Damir & Trolle, Anders B., 2013. "The term structure of interbank risk," Journal of Financial Economics, Elsevier, vol. 109(3), pages 707-733.
    9. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    10. Pierre Collin‐Dufresne & Bruno Solnik, 2001. "On the Term Structure of Default Premia in the Swap and LIBOR Markets," Journal of Finance, American Finance Association, vol. 56(3), pages 1095-1115, June.
    11. Giorgia Callegaro & Andrea Mazzoran & Carlo Sgarra, 2019. "A Self-Exciting Modelling Framework for Forward Prices in Power Markets," Papers 1910.13286, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    2. Hainaut, Donatien, 2021. "Lévy interest rate models with a long memory," LIDAM Discussion Papers ISBA 2021020, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2019. "Affine multiple yield curve models," Mathematical Finance, Wiley Blackwell, vol. 29(2), pages 568-611, April.
    2. Gallitschke, Janek & Seifried (née Müller), Stefanie & Seifried, Frank Thomas, 2017. "Interbank interest rates: Funding liquidity risk and XIBOR basis spreads," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 142-152.
    3. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Finance and Stochastics, Springer, vol. 24(2), pages 465-511, April.
    4. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    5. Alfeus, Mesias & Grasselli, Martino & Schlögl, Erik, 2020. "A consistent stochastic model of the term structure of interest rates for multiple tenors," Journal of Economic Dynamics and Control, Elsevier, vol. 114(C).
    6. Markus Hess, 2020. "A pure-jump mean-reverting short rate model," Papers 2006.14814, arXiv.org.
    7. Marek Rutkowski & Matthew Bickersteth, 2021. "Pricing and Hedging of SOFR Derivatives under Differential Funding Costs and Collateralization," Papers 2112.14033, arXiv.org.
    8. Mesias Alfeus, 2019. "Stochastic Modelling of New Phenomena in Financial Markets," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2019, January-A.
    9. The Anh Nguyen & Frank Thomas Seifried, 2015. "The Multi-Curve Potential Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(07), pages 1-32, November.
    10. Claudio Fontana & Zorana Grbac & Sandrine Gümbel & Thorsten Schmidt, 2020. "Term structure modelling for multiple curves with stochastic discontinuities," Post-Print hal-03898927, HAL.
    11. Andrea Macrina & Obeid Mahomed, 2018. "Consistent Valuation Across Curves Using Pricing Kernels," Risks, MDPI, vol. 6(1), pages 1-39, March.
    12. Yangfan Zhong, 2018. "LIBOR market model with multiplicative basis," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(02), pages 1-38, June.
    13. Christa Cuchiero & Claudio Fontana & Alessandro Gnoatto, 2016. "A general HJM framework for multiple yield curve modelling," Finance and Stochastics, Springer, vol. 20(2), pages 267-320, April.
    14. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    15. Sandrine Gumbel & Thorsten Schmidt, 2020. "Machine learning for multiple yield curve markets: fast calibration in the Gaussian affine framework," Papers 2004.07736, arXiv.org, revised Apr 2020.
    16. Ernst Eberlein & Christoph Gerhart & Zorana Grbac, 2019. "Multiple curve Lévy forward price model allowing for negative interest rates," Post-Print hal-03898912, HAL.
    17. repec:uts:finphd:41 is not listed on IDEAS
    18. Claudio Fontana & Zorana Grbac & Sandrine Gumbel & Thorsten Schmidt, 2018. "Term structure modeling for multiple curves with stochastic discontinuities," Papers 1810.09882, arXiv.org, revised Dec 2019.
    19. Gerhart, Christoph & Lütkebohmert, Eva, 2020. "Empirical analysis and forecasting of multiple yield curves," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 59-78.
    20. Alessandro Gnoatto & Nicole Seiffert, 2020. "Cross Currency Valuation and Hedging in the Multiple Curve Framework," Working Papers 03/2020, University of Verona, Department of Economics.
    21. Martino Grasselli & Giulio Miglietta, 2016. "A flexible spot multiple-curve model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1465-1477, October.

    More about this item

    Keywords

    Branching process; self-exciting process; multi-curve model; interest rate; Libor rate; OIS rate; multiplicative spread; affine process.;
    All these keywords.

    JEL classification:

    • E43 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Interest Rates: Determination, Term Structure, and Effects
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ver:wpaper:19/2019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Michael Reiter (email available below). General contact details of provider: https://edirc.repec.org/data/isverit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.