IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/201529.html
   My bibliography  Save this paper

Probability weighting functions

Author

Listed:
  • Martina Nardon

    (Department of Economics, C� Foscari University Of Venice)

  • Paolo Pianca

    (Department of Economics, C� Foscari University Of Venice)

Abstract

Cumulative prospect theory (CPT) has been proposed as an alternative to expected utility theory to explain irregular behavior by economic agents. CPT comprises two key transformations: one of outcome values and the other of objective probabilities. Risk attitudes are derived from the shapes of these transformations as well as their interaction. The focus of this contribution is on the transformation of objective probability, which is commonly referred as probability weighting function. We review different families of weighting functions proposed in the literature and study their features.

Suggested Citation

  • Martina Nardon & Paolo Pianca, 2015. "Probability weighting functions," Working Papers 2015:29, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2015:29
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2015/WP_DSE_nardon_pianca_29_15.pdf
    File Function: First version, 2015
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loomes, Graham & Moffatt, Peter G & Sugden, Robert, 2002. "A Microeconometric Test of Alternative Stochastic Theories of Risky Choice," Journal of Risk and Uncertainty, Springer, vol. 24(2), pages 103-130, March.
    2. Walther, Herbert, 2003. "Normal-randomness expected utility, time preference and emotional distortions," Journal of Economic Behavior & Organization, Elsevier, vol. 52(2), pages 253-266, October.
    3. Ali al-Nowaihi & Sanjit Dhami, 2010. "Composite Prospect Theory: A proposal to combine ‘prospect theory’ and ‘cumulative prospect theory’," Discussion Papers in Economics 10/11, Division of Economics, School of Business, University of Leicester.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Marie Pfiffelmann, 2011. "Solving the St. Petersburg Paradox in cumulative prospect theory: the right amount of probability weighting," Theory and Decision, Springer, vol. 71(3), pages 325-341, September.
    7. Diecidue, Enrico & Schmidt, Ulrich & Zank, Horst, 2009. "Parametric weighting functions," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1102-1118, May.
    8. Marc Rieger & Mei Wang, 2006. "Cumulative prospect theory and the St. Petersburg paradox," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 665-679, August.
    9. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    10. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    11. Mohammed Abdellaoui & Olivier l’Haridon & Horst Zank, 2009. "Separating Curvature and Elevation: A Parametric Weighting Function," Economics Discussion Paper Series 0901, Economics, The University of Manchester.
    12. Jonathan Ingersoll, 2008. "Non‐Monotonicity of the Tversky‐Kahneman Probability‐Weighting Function: A Cautionary Note," European Financial Management, European Financial Management Association, vol. 14(3), pages 385-390, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Nardon & Paolo Pianca, 2019. "Insurance premium calculation under continuous cumulative prospect theory," Working Papers 2019:03, Department of Economics, University of Venice "Ca' Foscari".
    2. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina Nardon & Paolo Pianca, 2019. "Behavioral premium principles," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 229-257, June.
    2. Martina Nardon & Paolo Pianca, 2019. "European option pricing under cumulative prospect theory with constant relative sensitivity probability weighting functions," Computational Management Science, Springer, vol. 16(1), pages 249-274, February.
    3. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.
    4. Peter Brooks & Simon Peters & Horst Zank, 2014. "Risk behavior for gain, loss, and mixed prospects," Theory and Decision, Springer, vol. 77(2), pages 153-182, August.
    5. Li, Baibing & Hensher, David A., 2017. "Risky weighting in discrete choice," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 1-21.
    6. Galarza, Francisco, 2009. "Choices under Risk in Rural Peru," MPRA Paper 17708, University Library of Munich, Germany.
    7. Salvatore Greco & Fabio Rindone, 2014. "The bipolar Choquet integral representation," Theory and Decision, Springer, vol. 77(1), pages 1-29, June.
    8. Özalp Özer & Yanchong Zheng, 2016. "Markdown or Everyday Low Price? The Role of Behavioral Motives," Management Science, INFORMS, vol. 62(2), pages 326-346, February.
    9. Azevedo, Eduardo M. & Gottlieb, Daniel, 2012. "Risk-neutral firms can extract unbounded profits from consumers with prospect theory preferences," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1291-1299.
    10. Mohammed Abdellaoui & Enrico Diecidue & Ayse Öncüler, 2011. "Risk Preferences at Different Time Periods: An Experimental Investigation," Management Science, INFORMS, vol. 57(5), pages 975-987, May.
    11. Katarzyna M. Werner & Horst Zank, 2019. "A revealed reference point for prospect theory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 67(4), pages 731-773, June.
    12. Jinrui Pan & Craig S. Webb & Horst Zank, 2019. "Delayed probabilistic risk attitude: a parametric approach," Theory and Decision, Springer, vol. 87(2), pages 201-232, September.
    13. Webb, Craig S. & Zank, Horst, 2011. "Accounting for optimism and pessimism in expected utility," Journal of Mathematical Economics, Elsevier, vol. 47(6), pages 706-717.
    14. Daniel Cavagnaro & Mark Pitt & Richard Gonzalez & Jay Myung, 2013. "Discriminating among probability weighting functions using adaptive design optimization," Journal of Risk and Uncertainty, Springer, vol. 47(3), pages 255-289, December.
    15. Martina Nardon & Paolo Pianca, 2014. "European option pricing with constant relative sensitivity probability weighting function," Working Papers 2014:25, Department of Economics, University of Venice "Ca' Foscari".
    16. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    17. Basieva, Irina & Khrennikova, Polina & Pothos, Emmanuel M. & Asano, Masanari & Khrennikov, Andrei, 2018. "Quantum-like model of subjective expected utility," Journal of Mathematical Economics, Elsevier, vol. 78(C), pages 150-162.
    18. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    19. Kim Kaivanto & Eike Kroll, 2014. "Alternation bias and reduction in St. Petersburg gambles," Working Papers 65600286, Lancaster University Management School, Economics Department.
    20. Matthew D. Rablen, 2023. "Loss Aversion, Risk Aversion, and the Shape of the Probability Weighting Function," Working Papers 2023013, The University of Sheffield, Department of Economics.

    More about this item

    Keywords

    Cumulative prospect theory; probability weighting function.;

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2015:29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Geraldine Ludbrook (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.