IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2007_03.html
   My bibliography  Save this paper

Forecasting Time Series with Long Memory and Level Shifts, A Bayesian Approach

Author

Listed:
  • Silvestro Di Sanzo

    (Department of Economics, University Of Alicante)

Abstract

Recent studies have showed that it is troublesome, in practice, to distinguish between long memory and nonlinear processes. Therefore, it is of obvious interest to try to capture both features of long memory and non-linearity into a single time series model to be able to assess their relative importance. In this paper we put forward such a model, where we combine the features of long memory and Markov nonlinearity. A Markov Chain Monte Carlo algorithm is proposed to estimate the model and evaluate its forecasting performance using Bayesian predictive densities. The resulting forecasts are a significant improvement over those obtained by the linear long memory and Markov switching models.

Suggested Citation

  • Silvestro Di Sanzo, 2007. "Forecasting Time Series with Long Memory and Level Shifts, A Bayesian Approach," Working Papers 2007_03, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2007_03
    as

    Download full text from publisher

    File URL: https://www.unive.it/web/fileadmin/user_upload/dipartimenti/DEC/doc/Pubblicazioni_scientifiche/working_papers/2007/WP_DSE_DiSanzo_03_07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andersson, Michael K. & Eklund, Bruno & Lyhagen, Johan, 1999. "A simple linear time series model with misleading nonlinear properties," Economics Letters, Elsevier, vol. 65(3), pages 281-284, December.
    2. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    3. Boldin Michael D., 1996. "A Check on the Robustness of Hamilton's Markov Switching Model Approach to the Economic Analysis of the Business Cycle," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-14, April.
    4. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    7. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    8. Gourieroux, Christian & Jasiak, Joann, 2001. "Memory and infrequent breaks," Economics Letters, Elsevier, vol. 70(1), pages 29-41, January.
    9. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    10. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Sanzo, Silvestro, 2018. "A Markov switching long memory model of crude oil price return volatility," Energy Economics, Elsevier, vol. 74(C), pages 351-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    2. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    3. Pierre Perron & Zhongjun Qu, 2006. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts and its Implications for Stock Returns Volatility," Boston University - Department of Economics - Working Papers Series WP2006-016, Boston University - Department of Economics.
    4. Charfeddine, Lanouar & Guégan, Dominique, 2012. "Breaks or long memory behavior: An empirical investigation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5712-5726.
    5. José M. Belbute & Alfredo Marvão Pereira, 2016. "Updated Reference Forecasts for Global CO2 Emissions from Fossil-Fuel Consumption," Working Papers 170, Department of Economics, College of William and Mary.
    6. Charfeddine, Lanouar, 2014. "True or spurious long memory in volatility: Further evidence on the energy futures markets," Energy Policy, Elsevier, vol. 71(C), pages 76-93.
    7. Claudio Morana, 2013. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks: New Insights on the US OIS SPreads Term Structure," Working Papers 233, University of Milano-Bicocca, Department of Economics, revised Feb 2013.
    8. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
    9. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    10. Jensen, Mark J. & Liu, Ming, 2006. "Do long swings in the business cycle lead to strong persistence in output?," Journal of Monetary Economics, Elsevier, vol. 53(3), pages 597-611, April.
    11. Gary Biglaiser & Ching-to Albert Ma, 2007. "Moonlighting: public service and private practice," RAND Journal of Economics, RAND Corporation, vol. 38(4), pages 1113-1133, December.
    12. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.
    13. Perron, Pierre & Qu, Zhongjun, 2010. "Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 275-290.
    14. Lanouar Charfeddine & Dominique Guegan, 2009. "Breaks or Long Memory Behaviour: An empirical Investigation," Post-Print halshs-00377485, HAL.
    15. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    16. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    17. Rodríguez, Gabriel, 2017. "Modeling Latin-American stock and Forex markets volatility: Empirical application of a model with random level shifts and genuine long memory," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 393-420.
    18. Monge, Manuel & Gil-Alana, Luis A. & Pérez de Gracia, Fernando, 2017. "Crude oil price behaviour before and after military conflicts and geopolitical events," Energy, Elsevier, vol. 120(C), pages 79-91.
    19. Leipus, Remigijus & Viano, Marie-Claude, 2003. "Long memory and stochastic trend," Statistics & Probability Letters, Elsevier, vol. 61(2), pages 177-190, January.
    20. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.

    More about this item

    Keywords

    Markov-Switching models; Bootstrap; Gibbs Sampling;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2007_03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sassano Sonia (email available below). General contact details of provider: https://edirc.repec.org/data/dsvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.