IDEAS home Printed from https://ideas.repec.org/p/van/wpaper/vuecon-sub-15-00015.html
   My bibliography  Save this paper

Improving the Finite Sample Performance of Autoregression Estimators in Dynamic Factor Models: A Bootstrap Approach

Author

Listed:
  • Mototsugu Shintani

    (University of Tokyo and Vanderbilt University)

  • Zi-yi Guo

    (Vanderbilt University)

Abstract

We investigate the finite sample properties of the estimator of a persistence parameter of an unobservable common factor when the factor is estimated by the principal components method. When the number of cross-sectional observations is not sufficiently large, relative to the number of time series observations, the autoregressive coefficient estimator of a positively autocorrelated factor is biased downward and the bias becomes larger for a more persistent factor. Based on theoretical and simulation analyses, we show that bootstrap procedures are e¤ective in reducing the bias, and bootstrap confidence intervals outperform naive asymptotic confidence intervals in terms of the coverage probability.

Suggested Citation

  • Mototsugu Shintani & Zi-yi Guo, 2015. "Improving the Finite Sample Performance of Autoregression Estimators in Dynamic Factor Models: A Bootstrap Approach," Vanderbilt University Department of Economics Working Papers 15-00013, Vanderbilt University Department of Economics.
  • Handle: RePEc:van:wpaper:vuecon-sub-15-00015
    as

    Download full text from publisher

    File URL: http://www.accessecon.com/pubs/VUECON/VUECON-15-00013.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
    2. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    3. Jushan Bai & Serena Ng, 2004. "A PANIC Attack on Unit Roots and Cointegration," Econometrica, Econometric Society, vol. 72(4), pages 1127-1177, July.
    4. Michael Woodford, 1999. "Optimal Monetary Policy Inertia," Manchester School, University of Manchester, vol. 67(s1), pages 1-35.
    5. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    6. Ireland, Peter N., 2001. "Technology shocks and the business cycle: On empirical investigation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(5), pages 703-719, May.
    7. repec:bla:manchs:v:67:y:1999:i:0:p:1-35 is not listed on IDEAS
    8. MacKinnon, James G. & Smith Jr., Anthony A., 1998. "Approximate bias correction in econometrics," Journal of Econometrics, Elsevier, vol. 85(2), pages 205-230, August.
    9. Marc P. Giannoni & Jean Boivin, 2005. "DSGE Models in a Data-Rich Environment," Computing in Economics and Finance 2005 431, Society for Computational Economics.
    10. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    11. Goncalves, Silvia & White, Halbert, 2005. "Bootstrap Standard Error Estimates for Linear Regression," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 970-979, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zi‐Yi Guo, 2021. "Out‐of‐sample performance of bias‐corrected estimators for diffusion processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 243-268, March.
    2. Yohei Yamamoto, 2019. "Bootstrap inference for impulse response functions in factor‐augmented vector autoregressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(2), pages 247-267, March.
    3. repec:cte:wsrepe:23974 is not listed on IDEAS
    4. Javier Maldonado & Esther Ruiz, 2021. "Accurate Confidence Regions for Principal Components Factors," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(6), pages 1432-1453, December.
    5. Bin Xu & Boqiang Lin, 2021. "Large fluctuations of China's commodity prices: Main sources and heterogeneous effects," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2074-2089, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shintani, Mototsugu & Guo, Zi-Yi, 2011. "Finite Sample Performance of Principal Components Estimators for Dynamic Factor Models: Asymptotic vs. Bootstrap Approximations," EconStor Preprints 167627, ZBW - Leibniz Information Centre for Economics.
    2. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    3. Gregor Bäurle & Elizabeth Steiner & Gabriel Züllig, 2021. "Forecasting the production side of GDP," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 458-480, April.
    4. repec:ecb:ecbwps:20111428 is not listed on IDEAS
    5. Matteo Barigozzi & Marco Lippi & Matteo Luciani, 2016. "Non-Stationary Dynamic Factor Models for Large Datasets," Finance and Economics Discussion Series 2016-024, Board of Governors of the Federal Reserve System (U.S.).
    6. Fabio Canova & Matteo Ciccarelli, 2009. "Estimating Multicountry Var Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 929-959, August.
    7. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    8. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    9. Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
    10. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    11. Monokroussos, George & Zhao, Yongchen, 2020. "Nowcasting in real time using popularity priors," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1173-1180.
    12. Frank Smets & Raf Wouters, 2002. "Monetary policy in an estimated stochastic dynamic general equilibrium model of the Euro area," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    13. Jorge L.M. Andraz & Pedro M.D.C.B. Gouveia & Paulo M.M. Rodrigues, 2009. "Modelling and Forecasting the UK Tourism Growth Cycle in Algarve," Tourism Economics, , vol. 15(2), pages 323-338, June.
    14. Stelios D. Bekiros & Alessia Paccagnini, 2016. "Policy‐Oriented Macroeconomic Forecasting with Hybrid DGSE and Time‐Varying Parameter VAR Models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 613-632, November.
    15. In Choi & Hanbat Jeong, 2019. "Model selection for factor analysis: Some new criteria and performance comparisons," Econometric Reviews, Taylor & Francis Journals, vol. 38(6), pages 577-596, July.
    16. Mu-Chun Wang, 2009. "Comparing the DSGE model with the factor model: an out-of-sample forecasting experiment," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 167-182.
    17. Claudia Godbout & Marco J. Lombardi, 2012. "Short-Term Forecasting of the Japanese Economy Using Factor Models," Staff Working Papers 12-7, Bank of Canada.
    18. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
    19. JAMES G. MacKINNON, 2006. "Bootstrap Methods in Econometrics," The Economic Record, The Economic Society of Australia, vol. 82(s1), pages 2-18, September.
    20. Bagliano, Fabio C. & Morana, Claudio, 2009. "International macroeconomic dynamics: A factor vector autoregressive approach," Economic Modelling, Elsevier, vol. 26(2), pages 432-444, March.
    21. repec:cte:wsrepe:23974 is not listed on IDEAS
    22. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.

    More about this item

    Keywords

    Bias Correction; Bootstrap; Dynamic Factor Model; Principal Components;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:van:wpaper:vuecon-sub-15-00015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: John P. Conley (email available below). General contact details of provider: http://www.vanderbilt.edu/econ/wparchive/index.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.