IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/73.html
   My bibliography  Save this paper

A General Framework for the Construction and the Smoothing of Forward Rate Curves

Author

Listed:
  • Oh-Kang Kwon

Abstract

This paper establishes a general theoretical and numerical framework for the construction and the smoothing of instantaneous forward rate curves. It is shown that if the smoothness of a curve is defined as an integral of a function in the derivatives of the curve, then the optimal curves are splines that satisfy certain ordinary differential equations. For such curves, and efficient numerical method is given for the determination of the spline parameters subject to mild assumptions. The resulting forward rate curves do not generally possess the desired degree of smoothness due mainly to the constraints imposed on the curves by the various market observed prices. A Partial solution to this problem is then introduced which achieves additional smoothing by taking into account the bid-ask ranges of each market rate. This eliminates much of the oscillatory patterns and the points of high curvature, and produces curves that are ideal for applications such as the estimation of interest rate models, and the pricing and risk management of interest rate derivatives, which are sensitive to forward rate curves.

Suggested Citation

  • Oh-Kang Kwon, 2002. "A General Framework for the Construction and the Smoothing of Forward Rate Curves," Research Paper Series 73, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:73
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp73.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chambers, Donald R. & Carleton, Willard T. & Waldman, Donald W., 1984. "A New Approach to Estimation of the Term Structure of Interest Rates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 19(3), pages 233-252, September.
    2. Vasicek, Oldrich A & Fong, H Gifford, 1982. "Term Structure Modeling Using Exponential Splines," Journal of Finance, American Finance Association, vol. 37(2), pages 339-348, May.
    3. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    4. Lars E.O. Svensson, 1994. "Estimating and Interpreting Forward Interest Rates: Sweden 1992 - 1994," NBER Working Papers 4871, National Bureau of Economic Research, Inc.
    5. McCulloch, J Huston, 1975. "The Tax-Adjusted Yield Curve," Journal of Finance, American Finance Association, vol. 30(3), pages 811-830, June.
    6. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bystrom, Hans & Kwon, Oh Kang, 2007. "A simple continuous measure of credit risk," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 508-523.
    2. Julian Manzano & Jorgen Blomvall, 2004. "Positive forward rates in the maximum smoothness framework," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 221-232.
    3. Damir Filipović & Sander Willems, 2016. "Exact Smooth Term Structure Estimation," Swiss Finance Institute Research Paper Series 16-38, Swiss Finance Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James M. Steeley, 2008. "Testing Term Structure Estimation Methods: Evidence from the UK STRIPS Market," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(7), pages 1489-1512, October.
    2. Emma Berenguer-Carceles & Ricardo Gimeno & Juan M. Nave, 2012. "Estimation of the Term Structure of Interest Rates: Methodology and Applications," Working Papers 12.06, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    3. Gonzalo Cortazar & Eduardo S. Schwartz & Lorenzo F. Naranjo, 2007. "Term-structure estimation in markets with infrequent trading," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(4), pages 353-369.
    4. Ganchev, Alexander, 2009. "Modeling the yield curve of spot interest rates under the conditions in Bulgaria," MPRA Paper 70048, University Library of Munich, Germany.
    5. Koo, Bonsoo & La Vecchia, Davide & Linton, Oliver, 2021. "Estimation of a nonparametric model for bond prices from cross-section and time series information," Journal of Econometrics, Elsevier, vol. 220(2), pages 562-588.
    6. Kanjilal, Kakali, 2013. "Factors causing movements of yield curve in India," Economic Modelling, Elsevier, vol. 31(C), pages 739-751.
    7. Michiel De Pooter, 2007. "Examining the Nelson-Siegel Class of Term Structure Models," Tinbergen Institute Discussion Papers 07-043/4, Tinbergen Institute.
    8. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    9. Ram Bhar & Carl Chiarella, 1996. "Construction of Zero-Coupon Yield Curve From Coupon Bond Yield Using Australian Data," Working Paper Series 70, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    10. Bing-Huei Lin, 2002. "Fitting term structure of interest rates using B-splines: the case of Taiwanese Government bonds," Applied Financial Economics, Taylor & Francis Journals, vol. 12(1), pages 57-75.
    11. Julian Manzano & Jorgen Blomvall, 2004. "Positive forward rates in the maximum smoothness framework," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 221-232.
    12. Koo, B. & La Vecchia, D. & Linton, O., 2019. "Nonparametric Recovery of the Yield Curve Evolution from Cross-Section and Time Series Information," Cambridge Working Papers in Economics 1916, Faculty of Economics, University of Cambridge.
    13. Jordan, James V. & Mansi, Sattar A., 2003. "Term structure estimation from on-the-run Treasuries," Journal of Banking & Finance, Elsevier, vol. 27(8), pages 1487-1509, August.
    14. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    15. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.
    16. Damir Filipovi'c & Sander Willems, 2016. "Exact Smooth Term-Structure Estimation," Papers 1606.03899, arXiv.org, revised Aug 2018.
    17. Rafael Barros de Rezende, 2011. "Giving Flexibility to the Nelson-Siegel Class of Term Structure Models," Brazilian Review of Finance, Brazilian Society of Finance, vol. 9(1), pages 27-49.
    18. Annaert, Jan & Claes, Anouk G.P. & De Ceuster, Marc J.K. & Zhang, Hairui, 2013. "Estimating the spot rate curve using the Nelson–Siegel model," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 482-496.
    19. Vadim Kaushanskiy & Victor Lapshin, 2016. "A nonparametric method for term structure fitting with automatic smoothing," Applied Economics, Taylor & Francis Journals, vol. 48(58), pages 5654-5666, December.
    20. Francis X. Diebold, 2004. "The Nobel Memorial Prize for Robert F. Engle," Scandinavian Journal of Economics, Wiley Blackwell, vol. 106(2), pages 165-185, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:73. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.