IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/317.html
   My bibliography  Save this paper

Pricing Interest Rate Derivatives in a Multifactor HJM Model with Time

Author

Listed:

Abstract

We investigate the partial differential equation (PDE) for pricing interest derivatives in the multi-factor Cheyette Model, which involves time-dependent volatility functions with a special structure. The high dimensional parabolic PDE that results is solved numerically via a modified sparse grid approach, that turns out to be accurate and efficient. In addition we study the corresponding Monte Carlo simulation, which is fast since the distribution of the state variables can be calculated explicitly. The results obtained from both methodologies are compared to the known analytical solutions for bonds and caplets. When there is no analytical solution, both European and Bermudan swaptions have been evaluated using the sparse grid PDE approach that is shown to outperform the Monte Carlo simulation.

Suggested Citation

  • Ingo Beyna & Carl Chiarella & Boda Kang, 2012. "Pricing Interest Rate Derivatives in a Multifactor HJM Model with Time," Research Paper Series 317, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:317
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-03/QFR-rp317.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomas Björk & Yuri Kabanov & Wolfgang Runggaldier, 1997. "Bond Market Structure in the Presence of Marked Point Processes," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 211-239, April.
    2. R. Bhar & C. Chiarella, 1997. "Transformation of Heath?Jarrow?Morton models to Markovian systems," The European Journal of Finance, Taylor & Francis Journals, vol. 3(1), pages 1-26, March.
    3. Marc Henrard, 2003. "Explicit bond option and swaption formula in Heath-Jarrow-Morton one factor model," Finance 0310009, University Library of Munich, Germany.
    4. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    5. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    6. Ho, Thomas S Y & Lee, Sang-bin, 1986. "Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-1029, December.
    7. Marc Henrard, 2003. "Explicit Bond Option Formula In Heath–Jarrow–Morton One Factor Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(01), pages 57-72.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcin Dec, 2019. "Markovian and multi-curve friendly parametrisation of a HJM model used in valuation adjustment of interest rate derivatives," Bank i Kredyt, Narodowy Bank Polski, vol. 50(2), pages 107-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingo Beyna, 2013. "Interest Rate Derivatives," Lecture Notes in Economics and Mathematical Systems, Springer, edition 127, number 978-3-642-34925-6, December.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Marcin Dec, 2019. "Markovian and multi-curve friendly parametrisation of a HJM model used in valuation adjustment of interest rate derivatives," Bank i Kredyt, Narodowy Bank Polski, vol. 50(2), pages 107-148.
    4. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
    5. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    6. Carl Chiarella & Oh-Kang Kwon, 2001. "State Variables and the Affine Nature of Markovian HJM Term Structure Models," Research Paper Series 52, Quantitative Finance Research Centre, University of Technology, Sydney.
    7. Lin, Shih-Kuei & Wang, Shin-Yun & Chen, Carl R. & Xu, Lian-Wen, 2017. "Pricing Range Accrual Interest Rate Swap employing LIBOR market models with jump risks," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 359-373.
    8. Camilla Landén & Tomas Björk, 2002. "On the construction of finite dimensional realizations for nonlinear forward rate models," Finance and Stochastics, Springer, vol. 6(3), pages 303-331.
    9. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    10. Björk, Tomas & Landén, Camilla & Svensson, Lars, 2002. "Finite dimensional Markovian realizations for stochastic volatility forward rate models," SSE/EFI Working Paper Series in Economics and Finance 498, Stockholm School of Economics, revised 07 May 2002.
    11. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    12. Henrard, Marc, 2006. "Bonds futures and their options: more than the cheapest-to-deliver; quality option and marginning," MPRA Paper 2001, University Library of Munich, Germany.
    13. Carl Chiarella & Christina Sklibosios, 2003. "A Class of Jump-Diffusion Bond Pricing Models within the HJM Framework," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 10(2), pages 87-127, September.
    14. Tomas Björk & Bent Jesper Christensen, 1999. "Interest Rate Dynamics and Consistent Forward Rate Curves," Mathematical Finance, Wiley Blackwell, vol. 9(4), pages 323-348, October.
    15. Michael J. Fleming & Eli M. Remolona, 1999. "The term structure of announcement effects," Staff Reports 76, Federal Reserve Bank of New York.
    16. Ram Bhar & Carl Chiarella & Thuy-Duong To, 2004. "Estimating the Volatility Structure of an Arbitrage-Free Interest Rate Model Via the Futures Markets," Finance 0409003, University Library of Munich, Germany.
    17. Ram Bhar & Carl Chiarella, 2000. "Approximating Heath-Jarrow-Morton Non-Markovian Term Structure of Interest Rate Models with Markovian Systems," Working Paper Series 76, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    18. Björk, Tomas, 2003. "On the Geometry of Interest Rate Models," SSE/EFI Working Paper Series in Economics and Finance 545, Stockholm School of Economics.
    19. Jirô Akahori & Hiroki Aoki & Yoshihiko Nagata, 2006. "Generalizations of Ho–Lee’s binomial interest rate model I: from one- to multi-factor," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 151-179, June.
    20. Henrard, Marc, 2007. "CMS swaps in separable one-factor Gaussian LLM and HJM model," MPRA Paper 3228, University Library of Munich, Germany.

    More about this item

    Keywords

    Cheyette model; Gaussian HJM; multi-factor model; PDE valuation; sparse grid; Monte Carlo simulation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.