IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/187.html
   My bibliography  Save this paper

Optimal Numeraires for Risk Measures

Author

Listed:
  • Damir Filipovic

    (Department of Mathematics, University of Munich)

Abstract

Can the usage of a risky numeraire with a greater than risk free expected return reduce the capital requirements in a solvency test? I will show that this is not the case. In fact, under a reasonable technical condition, there exists no optimal numeraire which yields smaller capital requirements than any other numeraire.

Suggested Citation

  • Damir Filipovic, 2007. "Optimal Numeraires for Risk Measures," Research Paper Series 187, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:187
    as

    Download full text from publisher

    File URL: https://www.uts.edu.au/sites/default/files/qfr-archive-02/QFR-rp187.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Filipovic, Damir & Kupper, Michael, 2007. "Monotone and cash-invariant convex functions and hulls," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 1-16, July.
    2. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    3. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gianluca Cassese, 2014. "Option Pricing in an Imperfect World," Papers 1406.0412, arXiv.org, revised Sep 2016.
    2. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.
    3. Farkas, Walter & Koch-Medina, Pablo & Munari, Cosimo, 2014. "Capital requirements with defaultable securities," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 58-67.
    4. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Capital requirements with defaultable securities," Papers 1203.4610, arXiv.org, revised Jan 2014.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    2. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    3. Mao, Tiantian & Hu, Jiuyun & Liu, Haiyan, 2018. "The average risk sharing problem under risk measure and expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 170-179.
    4. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    5. Marcelo Brutti Righi, 2019. "A composition between risk and deviation measures," Annals of Operations Research, Springer, vol. 282(1), pages 299-313, November.
    6. Filipovic, Damir & Vogelpoth, Nicolas, 2008. "A note on the Swiss Solvency Test risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 897-902, June.
    7. Walter Farkas & Pablo Koch-Medina & Cosimo Munari, 2012. "Beyond cash-additive risk measures: when changing the num\'{e}raire fails," Papers 1206.0478, arXiv.org, revised Feb 2014.
    8. Qian Lin & Frank Riedel, 2021. "Optimal consumption and portfolio choice with ambiguous interest rates and volatility," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 1189-1202, April.
    9. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    10. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    11. Tim Leung & Yoshihiro Shirai, 2015. "Optimal derivative liquidation timing under path-dependent risk penalties," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-32.
    12. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    13. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    14. Irina Penner & Anthony Réveillac, 2014. "Risk measures for processes and BSDEs," Post-Print hal-00814702, HAL.
    15. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    16. Balbás, Raquel, 2006. "Optimizing Measures of Risk: A Simplex-like Algorithm," DEE - Working Papers. Business Economics. WB 6534, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    17. Assa, Hirbod & Zimper, Alexander, 2018. "Preferences over all random variables: Incompatibility of convexity and continuity," Journal of Mathematical Economics, Elsevier, vol. 75(C), pages 71-83.
    18. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    19. Daniel Bartl & Samuel Drapeau & Ludovic Tangpi, 2017. "Computational aspects of robust optimized certainty equivalents and option pricing," Papers 1706.10186, arXiv.org, revised Mar 2019.
    20. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:187. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.