IDEAS home Printed from https://ideas.repec.org/p/unm/umamet/2003029.html
   My bibliography  Save this paper

Strategy-proof voting for single issues and cabinets

Author

Listed:
  • Maus, S.

    (Quantitative Economics)

  • Peters, H.J.M.

    (Quantitative Economics)

  • Storcken, A.J.A.

    (Quantitative Economics)

Abstract

In a model with a continuum of voters with symmetric single-peaked preferences on the one-dimensional unit interval (representing the political spectrum) a voting rule assigns to each profile of votes a point in the interval. We characterize all voting rules that are strategy-proof, anonymous, Pareto optimal, and which satisfy a weak form of continuity. This result paves the way for studying cabinet formation rules. A cabinet is an interval which has obtained sufficiently many votes. The main result on cabinet formation is a characterization of all cabinet formation rules that are strategy-proof with respect to the endpoints of the cabinet, anonymous, Pareto optimal, and continuous. Copyright Springer Science + Business Media, Inc. 2006
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Maus, S. & Peters, H.J.M. & Storcken, A.J.A., 2003. "Strategy-proof voting for single issues and cabinets," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  • Handle: RePEc:unm:umamet:2003029
    DOI: 10.26481/umamet.2003029
    as

    Download full text from publisher

    File URL: https://cris.maastrichtuniversity.nl/ws/files/980496/guid-e59bfeae-cb30-4f05-83a5-b0fda42ff546-ASSET1.0.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26481/umamet.2003029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kim C. Border & J. S. Jordan, 1983. "Straightforward Elections, Unanimity and Phantom Voters," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(1), pages 153-170.
    2. Lin Zhou, 1991. "Impossibility of Strategy-Proof Mechanisms in Economies with Pure Public Goods," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 107-119.
    3. Bossert, Walter, 1989. "On the extension of preferences over a set to the power set: An axiomatic characterization of a quasi-ordering," Journal of Economic Theory, Elsevier, vol. 49(1), pages 84-92, October.
    4. Bettina Klaus & Ton Storcken, 2002. "Choice correspondences for public goods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(1), pages 127-154.
    5. Nehring, Klaus & Puppe, Clemens, 1996. "Continuous Extensions of an Order on a Set to the Power Set," Journal of Economic Theory, Elsevier, vol. 68(2), pages 456-479, February.
    6. Peters, Hans & van der Stel, Hans & Storcken, Ton, 1992. "Pareto Optimality, Anonymity, and Strategy-Proofness in Location Problems," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 221-235.
    7. H. Moulin, 1980. "On strategy-proofness and single peakedness," Public Choice, Springer, vol. 35(4), pages 437-455, January.
    8. Ehlers, Lars & Peters, Hans & Storcken, Ton, 2002. "Strategy-Proof Probabilistic Decision Schemes for One-Dimensional Single-Peaked Preferences," Journal of Economic Theory, Elsevier, vol. 105(2), pages 408-434, August.
    9. Straffin, Philip Jr., 1994. "Power and stability in politics," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 2, chapter 32, pages 1127-1151, Elsevier.
    10. Kannai, Yakar & Peleg, Bezalel, 1984. "A note on the extension of an order on a set to the power set," Journal of Economic Theory, Elsevier, vol. 32(1), pages 172-175, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hans Peters & Souvik Roy & Ton Storcken, 2011. "Strategy-proof voting rules on a multidimensional policy space for a continuum of voters with elliptic preferences," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 2(4), pages 485-496, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chatterji, Shurojit & Zeng, Huaxia, 2019. "Random mechanism design on multidimensional domains," Journal of Economic Theory, Elsevier, vol. 182(C), pages 25-105.
    2. Chatterji, Shurojit & Zeng, Huaxia, 2018. "On random social choice functions with the tops-only property," Games and Economic Behavior, Elsevier, vol. 109(C), pages 413-435.
    3. Bettina Klaus & Panos Protopapas, 2020. "On strategy-proofness and single-peakedness: median-voting over intervals," International Journal of Game Theory, Springer;Game Theory Society, vol. 49(4), pages 1059-1080, December.
    4. Gershkov, Alex & Moldovanu, Benny & Shi, Xianwen, 2020. "Monotonic norms and orthogonal issues in multidimensional voting," Journal of Economic Theory, Elsevier, vol. 189(C).
    5. Massó, Jordi & Moreno de Barreda, Inés, 2011. "On strategy-proofness and symmetric single-peakedness," Games and Economic Behavior, Elsevier, vol. 72(2), pages 467-484, June.
    6. ,, 2009. "Strategy-proofness and single-crossing," Theoretical Economics, Econometric Society, vol. 4(2), June.
    7. Bordes, G. & Laffond, G. & Le Breton, Michel, 2012. "Euclidean Preferences, Option Sets and Strategy Proofness," TSE Working Papers 12-302, Toulouse School of Economics (TSE).
    8. Alejandro Saporiti, 2006. "Strategic voting on single-crossing domains," Economics Discussion Paper Series 0617, Economics, The University of Manchester.
    9. Protopapas, Panos, 2018. "On strategy-proofness and single-peakedness: median-voting over intervals," MPRA Paper 83939, University Library of Munich, Germany.
    10. Bordes, G. & Laffond, G. & Le Breton, Michel, 2012. "Euclidean Preferences, Option Sets and Strategy Proofness," IDEI Working Papers 717, Institut d'Économie Industrielle (IDEI), Toulouse.
    11. Ballester, Miguel A. & de Miguel, Juan R. & Nieto, Jorge, 2004. "Set comparisons in a general domain: the Indirect Utility Criterion," Mathematical Social Sciences, Elsevier, vol. 48(2), pages 139-150, September.
    12. Fleckinger, Pierre, 2008. "Bayesian improvement of the phantom voters rule: An example of dichotomic communication," Mathematical Social Sciences, Elsevier, vol. 55(1), pages 1-13, January.
    13. Barbera, S. & Bossert, W. & Pattanaik, P.K., 2001. "Ranking Sets of Objects," Cahiers de recherche 2001-02, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    14. Chatterjee, Swarnendu & Peters, Hans & Storcken, Ton, 2016. "Locating a public good on a sphere," Economics Letters, Elsevier, vol. 139(C), pages 46-48.
    15. Peters, Hans & Roy, Souvik & Sen, Arunava & Storcken, Ton, 2014. "Probabilistic strategy-proof rules over single-peaked domains," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 123-127.
    16. Salvador Barbera & Matthew Jackson, 1991. "A Characterization of Strategy-Proof Social Choice Functions for Economies with Pure Public Goods," Discussion Papers 964, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    17. John A. Weymark, 2008. "Strategy‐Proofness and the Tops‐Only Property," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 10(1), pages 7-26, February.
    18. Le Breton, Michel & Weymark, John A., 1999. "Strategy-proof social choice with continuous separable preferences," Journal of Mathematical Economics, Elsevier, vol. 32(1), pages 47-85, August.
    19. Peters, Hans & Roy, Souvik & Sadhukhan, Soumyarup, 2018. "Random social choice functions for single-peaked domains on trees," Research Memorandum 004, Maastricht University, Graduate School of Business and Economics (GSBE).
    20. Dolors Berga & Bernardo Moreno, 2009. "Strategic requirements with indifference: single-peaked versus single-plateaued preferences," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 32(2), pages 275-298, February.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:unm:umamet:2003029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Willems or Leonne Portz (email available below). General contact details of provider: https://edirc.repec.org/data/meteonl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.