IDEAS home Printed from https://ideas.repec.org/p/ulb/ulbeco/2013-9873.html
   My bibliography  Save this paper

A survey of failure prediction models offered by vendors with an application to Belgian data

Author

Listed:
  • Patrick Van Roy
  • Janet Mitchell

Abstract

No abstract is available for this item.

Suggested Citation

  • Patrick Van Roy & Janet Mitchell, 2007. "A survey of failure prediction models offered by vendors with an application to Belgian data," ULB Institutional Repository 2013/9873, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:ulb:ulbeco:2013/9873
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/9873/1/pvr-0006.pdf
    File Function: pvr-0006
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Marcus Box & Karl Gratzer & Xiang Lin, 2020. "Destructive entrepreneurship in the small business sector: bankruptcy fraud in Sweden, 1830–2010," Small Business Economics, Springer, vol. 54(2), pages 437-457, February.
    3. Ornella Wanda Maietta & Fernanda Mazzotta, 2018. "Firm Survival and Innovation: Knowledge Context Matters!," CSEF Working Papers 496, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    4. Adriana Csikosova & Maria Janoskova & Katarina Culkova, 2020. "Application of Discriminant Analysis for Avoiding the Risk of Quarry Operation Failure," JRFM, MDPI, vol. 13(10), pages 1-14, September.
    5. Haoming Wang & Xiangdong Liu, 2021. "Undersampling bankruptcy prediction: Taiwan bankruptcy data," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-17, July.
    6. Eling, Martin & Jia, Ruo, 2018. "Business failure, efficiency, and volatility: Evidence from the European insurance industry," International Review of Financial Analysis, Elsevier, vol. 59(C), pages 58-76.
    7. Ayadi, Rim & Abid, Ilyes & Guesmi, Khaled, 2021. "Survival of reorganized firms in France," Finance Research Letters, Elsevier, vol. 38(C).
    8. Campa, Domenico & Camacho-Miñano, María-del-Mar, 2015. "The impact of SME’s pre-bankruptcy financial distress on earnings management tools," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 222-234.
    9. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    10. H. Ooghe & S. De Prijcker, 2006. "Failure process and causes of company bankruptcy: a typology," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 06/388, Ghent University, Faculty of Economics and Business Administration.
    11. Jain Mayank & Malik Taniya & Malik Sakshi, 2023. "Deciphering Financial Health and Risk: Hierarchical Relationships and Interdependencies among Key Factors," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 11(1), pages 162-185, October.
    12. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    13. Mousavi, Mohammad M. & Ouenniche, Jamal & Xu, Bing, 2015. "Performance evaluation of bankruptcy prediction models: An orientation-free super-efficiency DEA-based framework," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 64-75.
    14. Paramonovs Sergejs & Ijevleva Ksenija, 2015. "The Role of Marketing Tools in the Improvement of Consumers Financial Literacy," Acta Universitatis Sapientiae, Economics and Business, Sciendo, vol. 27(1), pages 40-45, December.
    15. Jiang, Cuiqing & Zhou, Yiru & Chen, Bo, 2023. "Mining semantic features in patent text for financial distress prediction," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    16. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    17. repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
    18. Õie Renata Siimon & Oliver Lukason, 2021. "A Decision Support System for Corporate Tax Arrears Prediction," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    19. Galya Taseva, 2020. "Determinants of Short-term Liabilities of Financially Distressed SME-s," Business Management, D. A. Tsenov Academy of Economics, Svishtov, Bulgaria, issue 1 Year 20, pages 5-24.
    20. Casado Yusta, Silvia & Nœ–ez Letamendía, Laura & Pacheco Bonrostro, Joaqu’n Antonio, 2018. "Predicting Corporate Failure: The GRASP-LOGIT Model || Predicci—n de la quiebra empresarial: el modelo GRASP-LOGIT," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 26(1), pages 294-314, Diciembre.
    21. Hyunjung Nam & Won Gyun No & Youngsu Lee, 2017. "Are Commercial Financial Databases Reliable? New Evidence from Korea," Sustainability, MDPI, vol. 9(8), pages 1-23, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ulb:ulbeco:2013/9873. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Benoit Pauwels (email available below). General contact details of provider: https://edirc.repec.org/data/ecsulbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.