IDEAS home Printed from https://ideas.repec.org/p/ufg/qdsems/15-2007.html
   My bibliography  Save this paper

Convexity on Nash Equilibria without Linear Structure

Author

Listed:
  • Francesco Ciardiello

Abstract

To give sucient conditions for Nash Equilibrium existence in a continuous game is a central problem in Game Theory. In this paper, we present two games in which we show how the continuity and quasi-concavity hypotheses are unconnected one to each other. Then, we relax the quasiconcavity assumption by exploiting the multiconnected convexity's concept (Mechaiekh & Others, 1998) in spaces without any linear structure. These results will be applied to two non-zero-sum games lacking the classical assumptions and more recent improvements (Ziad, 1997), (Abalo & Kostreva, 2004). As a minor result, some counterexamples about relationship between some continuity conditions due to Lignola (1997), Reny (1999) and Simon (1995) for Nash equilibria existence are obtained.

Suggested Citation

  • Francesco Ciardiello, 2007. "Convexity on Nash Equilibria without Linear Structure," Quaderni DSEMS 15-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
  • Handle: RePEc:ufg:qdsems:15-2007
    as

    Download full text from publisher

    File URL: http://www.economia.unifg.it/sites/sd01/files/allegatiparagrafo/29-11-2016/q152007.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eaton, B Curtis & Lipsey, Richard G, 1976. "The Non-Uniqueness of Equilibrium in the Loschian Location Model," American Economic Review, American Economic Association, vol. 66(1), pages 71-93, March.
    2. Michael R. Baye & Guoqiang Tian & Jianxin Zhou, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 935-948.
    3. Reny, Philip J., 1995. "Local Payoff Security and the Existence of Nash Equilibrium in Discontinuous Games," Working Paper Series 435, Research Institute of Industrial Economics.
    4. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
    5. Ziad, Abderrahmane, 1999. "Pure strategy Nash equilibria of non-zero-sum two-person games: non-convex case," Economics Letters, Elsevier, vol. 62(3), pages 307-310, March.
    6. Llinares, Juan-Vicente, 1998. "Unified treatment of the problem of existence of maximal elements in binary relations: a characterization," Journal of Mathematical Economics, Elsevier, vol. 29(3), pages 285-302, April.
    7. Partha Dasgupta & Eric Maskin, 1986. "The Existence of Equilibrium in Discontinuous Economic Games, I: Theory," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(1), pages 1-26.
    8. M. B. Lignola, 1997. "Ky Fan Inequalities and Nash Equilibrium Points without Semicontinuity and Compactness," Journal of Optimization Theory and Applications, Springer, vol. 94(1), pages 137-145, July.
    9. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
    10. Nishimura, Kazuo & Friedman, James, 1981. "Existence of Nash Equilibrium in n Person Games without Quasi-Concavity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 637-648, October.
    11. Leo K. Simon, 1987. "Games with Discontinuous Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(4), pages 569-597.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    2. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    3. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    4. Francesco Ciardiello, 2007. "Some Examples and Counterexamples about Continuity on Equilibrium Problems," Quaderni DSEMS 16-2007, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    5. Rabia Nessah & Guoqiang Tian, 2013. "Existence of Solution of Minimax Inequalities, Equilibria in Games and Fixed Points Without Convexity and Compactness Assumptions," Journal of Optimization Theory and Applications, Springer, vol. 157(1), pages 75-95, April.
    6. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    7. Rabia Nessah & Kristiaan Kerstens, 2008. "Characterizations of the Existence of Nash Equilibria with Non-convex Strategy Sets," Working Papers 2008-ECO-13, IESEG School of Management.
    8. Francisco Facchinei & Christian Kanzow, 2010. "Generalized Nash Equilibrium Problems," Annals of Operations Research, Springer, vol. 175(1), pages 177-211, March.
    9. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    10. Rabia Nessah & Guoqiang Tian, 2008. "Existence of Equilibrium in Minimax Inequalities, Saddle Points, Fixed Points, and Games without Convexity Sets," Working Papers 2008-ECO-15, IESEG School of Management, revised Nov 2010.
    11. Vincenzo Scalzo, 2013. "Essential equilibria of discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 54(1), pages 27-44, September.
    12. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    13. Oriol Carbonell-Nicolau & Richard P. McLean, 2018. "On the Existence of Nash Equilibrium in Bayesian Games," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 100-129, February.
    14. Luciano I. de Castro, 2008. "Equilibria Existence in Regular Discontinuous Games," Discussion Papers 1463, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    15. Guilherme Carmona, 2005. "On the existence of equilibria in discontinuous games: three counterexamples," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(2), pages 181-187, June.
    16. Scalzo, Vincenzo, 2010. "Pareto efficient Nash equilibria in discontinuous games," Economics Letters, Elsevier, vol. 107(3), pages 364-365, June.
    17. F. Fakhar & H. R. Hajisharifi & Z. Soltani, 2023. "Noncoercive and noncontinuous equilibrium problems: existence theorem in infinite-dimensional spaces," Journal of Global Optimization, Springer, vol. 86(4), pages 989-1003, August.
    18. Prokopovych, Pavlo & Yannelis, Nicholas C., 2014. "On the existence of mixed strategy Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 52(C), pages 87-97.
    19. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00846143, HAL.
    20. Philip J. Reny, 2016. "Introduction to the symposium on discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 423-429, March.

    More about this item

    Keywords

    Nash Equilibria Existence; Fixed Point Theorem; Generalized Convexity; 2 Person Game; 3 Person Game; Symmetric Game; Generalized Continuity.;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ufg:qdsems:15-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luca Grilli (email available below). General contact details of provider: https://edirc.repec.org/data/emsfoit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.