IDEAS home Printed from https://ideas.repec.org/p/ucr/wpaper/202218.html
   My bibliography  Save this paper

Testing Attrition Bias in Field Experiments

Author

Listed:
  • Dalia Ghanem

    (University of California, Davis)

  • Sarojini Hirshleifer

    (Department of Economics, University of California Riverside)

  • Karen Ortiz-Becerra

    (University of San Diego)

Abstract

We approach attrition in field experiments with baseline data as an identification problem in a panel model. A systematic review of the literature indicates that there is no consensus on how to test for attrition bias. We establish identifying assumptions for treatment effects for both the respondent subpopulation and the study population, and propose procedures to test their sharp implications. We then relate our proposed tests to current empirical practice, and demonstrate that the most commonly used test in the literature is not a test of internal validity in general. We illustrate the relevance of our analysis using several empirical applications.

Suggested Citation

  • Dalia Ghanem & Sarojini Hirshleifer & Karen Ortiz-Becerra, 2019. "Testing Attrition Bias in Field Experiments," Working Papers 202218, University of California at Riverside, Department of Economics, revised Oct 2022.
  • Handle: RePEc:ucr:wpaper:202218
    as

    Download full text from publisher

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202218.pdf
    File Function: First version, 2019
    Download Restriction: no

    File URL: https://economics.ucr.edu/repec/ucr/wpaper/202218R.pdf
    File Function: Revised version, 2022
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tarek Azzam & Michael Bates & David Fairris, 2019. "Do Learning Communities Increase First Year College Retention? Testing Sample Selection and External Validity of Randomized Control Trials," Working Papers 202002, University of California at Riverside, Department of Economics.
    2. Ben Weidmann & Luke Miratrix, 2021. "Missing, presumed different: Quantifying the risk of attrition bias in education evaluations," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(2), pages 732-760, April.
    3. Fulya Ersoy, 2021. "Returns to effort: experimental evidence from an online language platform," Experimental Economics, Springer;Economic Science Association, vol. 24(3), pages 1047-1073, September.
    4. Guigonan S. Adjognon & Daan van Soest & Jonas Guthoff, 2021. "Reducing Hunger with Payments for Environmental Services (PES): Experimental Evidence from Burkina Faso," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 831-857, May.
    5. Deb, Saubhik & Joseph, George & Andrés, Luis Alberto & Zabludovsky, Jonathan Grabinsky, 2024. "Is the glass half full or half empty? Examining the impact of Swatch Bharat interventions on sanitation and hygiene in rural Punjab, India," Journal of Development Economics, Elsevier, vol. 170(C).
    6. Simon Calmar Andersen & Louise Beuchert & Phillip Heiler & Helena Skyt Nielsen, 2023. "A Guide to Impact Evaluation under Sample Selection and Missing Data: Teacher's Aides and Adolescent Mental Health," Papers 2308.04963, arXiv.org.
    7. Annie Alcid & Erwin Bulte & Robert Lensink & Aussi Sayinzoga & Mark Treurniet, 2023. "Short- and Medium-term Impacts of Employability Training: Evidence from a Randomised Field Experiment in Rwanda," Journal of African Economies, Centre for the Study of African Economies, vol. 32(3), pages 296-328.
    8. Coali, Andrea & Gambardella, Alfonso & Novelli, Elena, 2024. "Scientific decision-making, project selection and longer-term outcomes," Research Policy, Elsevier, vol. 53(6).
    9. Rafkin, Charlie & Shreekumar, Advik & Vautrey, Pierre-Luc, 2021. "When guidance changes: Government stances and public beliefs," Journal of Public Economics, Elsevier, vol. 196(C).

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucr:wpaper:202218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kelvin Mac (email available below). General contact details of provider: https://edirc.repec.org/data/deucrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.