IDEAS home Printed from https://ideas.repec.org/p/ucm/doicae/2501.html
   My bibliography  Save this paper

Eco-RETINA: a green flexible algorithm for model building

Author

Listed:
  • Capilla, Javier

    (Instituto Complutense de Análisis Económico (ICAE), Universidad Complutense de Madrid (Spain).)

  • Alcaraz, Alba

    (Instituto Complutense de Análisis Económico (ICAE), Universidad Complutense de Madrid (Spain).)

  • Valarezo, Ã ngel

    (Instituto Complutense de Análisis Económico (ICAE), Universidad Complutense de Madrid (Spain).)

  • García-Hiernaux, Alfredo

    (Instituto Complutense de Análisis Económico (ICAE), Universidad Complutense de Madrid (Spain).)

  • Pérez Amaral, Teodosio

    (Instituto Complutense de Análisis Económico (ICAE), Universidad Complutense de Madrid (Spain).)

Abstract

Eco-RETINA is an innovative and eco-friendly algorithm explicitly designed for out-of-sample prediction. Functioning as a regression-based flexible approximator, it is linear in parameters but nonlinear in inputs, employing a selective model search to optimize performance. The algorithm adeptly manages multicollinearity while emphasizing speed, accuracy, and environmental sustainability. Its modular and transparent structure facilitates easy interpretation and modification, making it an invaluable tool for researchers in developing explicit models for out-of-sample forecasting. The algorithm generates outputs such as a list of relevant transformed inputs, coefficients, standard deviations, and confidence intervals, enhancing its interpretability.

Suggested Citation

  • Capilla, Javier & Alcaraz, Alba & Valarezo, à ngel & García-Hiernaux, Alfredo & Pérez Amaral, Teodosio, 2025. "Eco-RETINA: a green flexible algorithm for model building," Documentos de Trabajo del ICAE 2025-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  • Handle: RePEc:ucm:doicae:2501
    as

    Download full text from publisher

    File URL: https://hdl.handle.net/20.500.14352/117836
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teodosio Perez‐Amaral & Giampiero M. Gallo & Halbert White, 2003. "A Flexible Tool for Model Building: the Relevant Transformation of the Inputs Network Approach (RETINA)," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(s1), pages 821-838, December.
    2. Perez-Amaral, Teodosio & Gallo, Giampiero M. & White, Halbert, 2005. "A COMPARISON OF COMPLEMENTARY AUTOMATIC MODELING METHODS: RETINA AND PcGets," Econometric Theory, Cambridge University Press, vol. 21(1), pages 262-277, February.
    3. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Blazejowski & Pawel Kufel & Tadeusz Kufel, 2009. "Automatic Procedure of Building Congruent Dynamic Model in Gretl," EHUCHAPS, in: Ignacio Díaz-Emparanza & Petr Mariel & María Victoria Esteban (ed.), Econometrics with gretl. Proceedings of the gretl Conference 2009, edition 1, chapter 5, pages 75-89, Universidad del País Vasco - Facultad de Ciencias Económicas y Empresariales.
    2. Camila Epprecht & Dominique Guegan & Álvaro Veiga & Joel Correa da Rosa, 2017. "Variable selection and forecasting via automated methods for linear models: LASSO/adaLASSO and Autometrics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00917797, HAL.
    3. Jennifer Castle & David Hendry, 2013. "Semi-automatic Non-linear Model selection," Economics Series Working Papers 654, University of Oxford, Department of Economics.
    4. Camila Epprecht & Dominique Guegan & Álvaro Veiga, 2013. "Comparing variable selection techniques for linear regression: LASSO and Autometrics," Documents de travail du Centre d'Economie de la Sorbonne 13080, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    5. Leonel Cerno & Teodosio Pérez Amaral, 2006. "Medición y Determinantes de la Brecha Tecnológica en España," Documentos de Trabajo del ICAE 0601, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    6. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    7. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    8. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    9. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    10. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    11. Castle Jennifer L. & Doornik Jurgen A & Hendry David F., 2011. "Evaluating Automatic Model Selection," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-33, February.
    12. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    13. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    14. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    15. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    16. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    17. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    18. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    19. Lopez Cordova,Jose Ernesto, 2020. "Digital Platforms and the Demand for International Tourism Services," Policy Research Working Paper Series 9147, The World Bank.
    20. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.

    More about this item

    Keywords

    Eco-RETINA; Out-of-sample prediction.;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ucm:doicae:2501. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Águeda González Abad (email available below). General contact details of provider: https://edirc.repec.org/data/feucmes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.