IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/30546.html
   My bibliography  Save this paper

Spatial scale in land use models: application to the Teruti-Lucas survey

Author

Listed:
  • Chakir, Raja
  • Laurent, Thibault
  • Ruiz-Gazen, Anne
  • Thomas-Agnan, Christine
  • Vignes, Céline

Abstract

We consider the problem of land use prediction at di erent spatial scales using point level data such as the Teruti-Lucas (T-L hereafter1) survey and some explanatory variables. We analyze the components of the prediction error using a synthetic data set constructed from the Teruti-Lucas points in the Midi-Pyrénées region and a ve categories land use classi cation. The study rst shows that the number of points in the Teruti- Lucas survey is quite enough for estimating the probabilities of each land use category with a good quality. Furthermore it reveals that, contrary to usual practice, when the objective is to predict land use at aggregated levels, land use probabilities should be estimated at more locations where explanatory variables are available rather than restricting to the initial Teruti-Lucas locations. Indeed this strategy borrows strength from the knowledge of the explanatory variables which may be heterogeneous. Finally, guidelines for constructing the grid of locations for estimation are given from the analysis of the heterogeneity of each explanatory variable.

Suggested Citation

  • Chakir, Raja & Laurent, Thibault & Ruiz-Gazen, Anne & Thomas-Agnan, Christine & Vignes, Céline, 2016. "Spatial scale in land use models: application to the Teruti-Lucas survey," TSE Working Papers 16-667, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:30546
    as

    Download full text from publisher

    File URL: https://www.tse-fr.eu/sites/default/files/TSE/documents/doc/wp/2016/wp_tse_667.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakir, Raja & Laurent, Thibault & Ruiz-Gazen, Anne & Thomas-Agnan, Christine & Vignes, Céline, 2016. "Land use predictions on a regular grid at different scales and with easily accessible covariates," TSE Working Papers 16-666, Toulouse School of Economics (TSE).
    2. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, January.
    3. David J. Lewis & Andrew J. Plantinga, 2007. "Policies for Habitat Fragmentation: Combining Econometrics with GIS-Based Landscape Simulations," Land Economics, University of Wisconsin Press, vol. 83(2), pages 109-127.
    4. Van Huyen Do & Christine Thomas-Agnan & Anne Vanhems, 2015. "Spatial reallocation of areal data – another look at basic methods," Revue d'économie régionale et urbaine, Armand Colin, vol. 0(1), pages 27-58.
    5. Gotway C.A. & Young L.J., 2002. "Combining Incompatible Spatial Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 632-648, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. KURKALOVA, Lyubov A. & WADE, Tara R., 2013. "Aggregated Choice Data And Logit Models: Application To Environmental Benign Practices Of Conservation Tillage By Farmers In The State Of Iowa," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 13(2), pages 119-128.
    2. Bujosa Bestard, Angel & Font, Antoni Riera, 2009. "Environmental diversity in recreational choice modelling," Ecological Economics, Elsevier, vol. 68(11), pages 2743-2750, September.
    3. Lewis, David J. & Plantinga, Andrew J. & Nelson, Erik & Polasky, Stephen, 2011. "The efficiency of voluntary incentive policies for preventing biodiversity loss," Resource and Energy Economics, Elsevier, vol. 33(1), pages 192-211, January.
    4. Lewis, David J. & Provencher, Bill & Butsic, Van, 2009. "The dynamic effects of open-space conservation policies on residential development density," Journal of Environmental Economics and Management, Elsevier, vol. 57(3), pages 239-252, May.
    5. Lewis, David J., 2010. "An economic framework for forecasting land-use and ecosystem change," Resource and Energy Economics, Elsevier, vol. 32(2), pages 98-116, April.
    6. Jean-Sauveur Ay & Raja Chakir & Julie Le Gallo, 2014. "The effects of scale, space and time on the predictive accuracy of land use models," Working Papers 2014/02, INRA, Economie Publique.
    7. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    8. Man Li & JunJie Wu & Xiangzheng Deng, 2013. "Identifying Drivers of Land Use Change in China: A Spatial Multinomial Logit Model Analysis," Land Economics, University of Wisconsin Press, vol. 89(4), pages 632-654.
    9. Oladipo S. Obembe & Nathan P. Hendricks, 2022. "Marginal cost of carbon sequestration through forest afforestation of agricultural land in the southeastern United States," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 59-73, November.
    10. Zhifeng Gao & Ted C. Schroeder, 2009. "Consumer responses to new food quality information: are some consumers more sensitive than others?," Agricultural Economics, International Association of Agricultural Economists, vol. 40(3), pages 339-346, May.
    11. Cheng, Leilei & Yin, Changbin & Chien, Hsiaoping, 2015. "Demand for milk quantity and safety in urban China: evidence from Beijing and Harbin," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    12. Wen, Chieh-Hua & Huang, Chia-Jung & Fu, Chiang, 2020. "Incorporating continuous representation of preferences for flight departure times into stated itinerary choice modeling," Transport Policy, Elsevier, vol. 98(C), pages 10-20.
    13. Johannes Buggle & Thierry Mayer & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "The Refugee’s Dilemma: Evidence from Jewish Migration out of Nazi Germany," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 1273-1345.
    14. Christelis, Dimitris & Dobrescu, Loretti I. & Motta, Alberto, 2020. "Early life conditions and financial risk-taking in older age," The Journal of the Economics of Ageing, Elsevier, vol. 17(C).
    15. Ortega, David L. & Wang, H. Holly & Wu, Laping & Hong, Soo Jeong, 2015. "Retail channel and consumer demand for food quality in China," China Economic Review, Elsevier, vol. 36(C), pages 359-366.
    16. Tina Birgitte Hansen & Jes Sanddal Lindholt & Axel Diederichsen & Rikke Søgaard, 2019. "Do Non-participants at Screening have a Different Threshold for an Acceptable Benefit–Harm Ratio than Participants? Results of a Discrete Choice Experiment," The Patient: Patient-Centered Outcomes Research, Springer;International Academy of Health Preference Research, vol. 12(5), pages 491-501, October.
    17. Doyle, Orla & Fidrmuc, Jan, 2006. "Who favors enlargement?: Determinants of support for EU membership in the candidate countries' referenda," European Journal of Political Economy, Elsevier, vol. 22(2), pages 520-543, June.
    18. Tovar, Jorge, 2012. "Consumers’ Welfare and Trade Liberalization: Evidence from the Car Industry in Colombia," World Development, Elsevier, vol. 40(4), pages 808-820.
    19. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    20. Yamada, Katsunori & Sato, Masayuki, 2013. "Another avenue for anatomy of income comparisons: Evidence from hypothetical choice experiments," Journal of Economic Behavior & Organization, Elsevier, vol. 89(C), pages 35-57.

    More about this item

    Keywords

    land use models; spatial scale; Teruti-Lucas survey; Gini-Simpson impurity index; classication tree;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • R14 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Land Use Patterns

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:30546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.