IDEAS home Printed from https://ideas.repec.org/p/trr/qfrawp/201901.html
   My bibliography  Save this paper

Systemic Impact of the Risk Based Fund Classification and Implications for Fund Management

Author

Listed:
  • Martin Ewen
  • Marc Oliver Rieger

Abstract

This paper examines the impact of European legislation regarding risk classification of mutual funds. We conduct analyses on a set of worldwide equity indices and find that a strategy based on the long term volatility as it is imposed by the Synthetic Risk Reward Indicator (SRRI) would lead to substantial variations in exposures ranging from short phases of very high leverage to long periods of under-investments that would be required to keep the risk classes. In some cases funds will be forced to migrate to higher risk classes due to limited means to reduce volatilities after crises events. In other cases they might have to migrate to lower risk classes or increase their leverage to ridiculous amounts. Overall we find if the SRRI creates a binding mechanism for fund managers, it will have substantial negative impact on portfolio management.

Suggested Citation

  • Martin Ewen & Marc Oliver Rieger, 2019. "Systemic Impact of the Risk Based Fund Classification and Implications for Fund Management," Working Paper Series 2019-01, University of Trier, Research Group Quantitative Finance and Risk Analysis.
  • Handle: RePEc:trr:qfrawp:201901
    as

    Download full text from publisher

    File URL: http://www.uni-trier.de/fileadmin/fb4/prof/BWL/FIN/QFRA_Working_Papers/QFRA_19-01.pdf
    File Function: First version, 2019
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold & Kamil Yilmaz, 2009. "Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets," Economic Journal, Royal Economic Society, vol. 119(534), pages 158-171, January.
    2. Paul Harrison & Harold H. Zhang, 1999. "An Investigation Of The Risk And Return Relation At Long Horizons," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 399-408, August.
    3. repec:bla:jfinan:v:58:y:2003:i:3:p:975-1008 is not listed on IDEAS
    4. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    5. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    6. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Herr, Donovan & Clausse, Emilien & Vrins, Frédéric, 2021. "Migration to the PRIIPs framework: what impact on the European risk indicator of UCITS funds ?," LIDAM Reprints LFIN 2021025, Université catholique de Louvain, Louvain Finance (LFIN).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    2. Martin Ewen, 2018. "Where is the Risk Reward? The Impact of Volatility-Based Fund Classification on Performance," Risks, MDPI, vol. 6(3), pages 1-20, August.
    3. Chiang, Thomas C., 2019. "Empirical analysis of intertemporal relations between downside risks and expected returns—Evidence from Asian markets," Research in International Business and Finance, Elsevier, vol. 47(C), pages 264-278.
    4. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    5. Noureddine Benlagha & Wael Hemrit, 2022. "Does economic policy uncertainty matter to explain connectedness within the international sovereign bond yields?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(1), pages 1-21, January.
    6. Allen, David E. & Amram, Ron & McAleer, Michael, 2013. "Volatility spillovers from the Chinese stock market to economic neighbours," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 238-257.
    7. Vincenzo Candila & Salvatore Farace, 2018. "On the Volatility Spillover between Agricultural Commodities and Latin American Stock Markets," Risks, MDPI, vol. 6(4), pages 1-16, October.
    8. Adriana AnaMaria Davidescu & Eduard Mihai Manta & Razvan Gabriel Hapau & Mihaela Gruiescu & Oana Mihaela Vacaru (Boita), 2023. "Exploring the Contagion Effect from Developed to Emerging CEE Financial Markets," Mathematics, MDPI, vol. 11(3), pages 1-50, January.
    9. Michael Ehrmann & Marcel Fratzscher & Roberto Rigobon, 2011. "Stocks, bonds, money markets and exchange rates: measuring international financial transmission," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(6), pages 948-974, September.
    10. Berg, Kimberly A. & Vu, Nam T., 2019. "International spillovers of U.S. financial volatility," Journal of International Money and Finance, Elsevier, vol. 97(C), pages 19-34.
    11. Golosnoy, Vasyl & Gribisch, Bastian & Liesenfeld, Roman, 2015. "Intra-daily volatility spillovers in international stock markets," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 95-114.
    12. Dodd, Olga & Frijns, Bart, 2018. "NYSE closure and global equity trading: The case of cross-listed stocks," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 138-150.
    13. Ferhat Camlica & Didem Gunes & Etkin Ozen, 2017. "A Financial Connectedness Analysis for Turkey," Working Papers 1719, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
    14. Shaen Corbet & Yang Hou & Yang Hu & Les Oxley, 2024. "Time varying risk aversion and its connectedness: evidence from cryptocurrencies," Annals of Operations Research, Springer, vol. 338(2), pages 879-923, July.
    15. Chudik, Alexander & Fratzscher, Marcel, 2011. "Identifying the global transmission of the 2007-2009 financial crisis in a GVAR model," European Economic Review, Elsevier, vol. 55(3), pages 325-339, April.
    16. Sewraj, Deeya & Gebka, Bartosz & Anderson, Robert D.J., 2018. "Identifying contagion: A unifying approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 224-240.
    17. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    18. Lien, Donald & Lee, Geul & Yang, Li & Zhang, Yuyin, 2018. "Volatility spillovers among the U.S. and Asian stock markets: A comparison between the periods of Asian currency crisis and subprime credit crisis," The North American Journal of Economics and Finance, Elsevier, vol. 46(C), pages 187-201.
    19. Shogbuyi, Abiodun & Steeley, James M., 2017. "The effect of quantitative easing on the variance and covariance of the UK and US equity markets," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 281-291.
    20. Slim Mseddi & Noureddine Benlagha, 2017. "An Analysis of Spillovers Between Islamic and Conventional Stock Bank Returns: Evidence from the GCC Countries," Multinational Finance Journal, Multinational Finance Journal, vol. 21(2), pages 91-132, June.

    More about this item

    Keywords

    portfolio risk; volatility; SRRI; regulation;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trr:qfrawp:201901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Artem Dyachenko (email available below). General contact details of provider: https://edirc.repec.org/data/petride.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.