IDEAS home Printed from https://ideas.repec.org/p/trn/utwpde/0720.html
   My bibliography  Save this paper

Aggregation of regional economic time series with different spatial correlation structures

Author

Listed:
  • Giuseppe Arbia
  • Marco Bee
  • Giuseppe Espa

Abstract

In this paper we compare the relative efficiency of different forecasting methods of space-time series when variables are spatially and temporally correlated. We consider the case of a space-time series aggregated into a single time series and the more general instance of a space-time series aggregated into a coarser spatial partition. We extend in various directions the outcomes found in the literature by including the consideration of larger datasets and the treatment of edge effects and of negative spatial correlation. The outcomes obtained provide operational suggestions on how to choose between alternative forecasting methods in empirical circumstances.

Suggested Citation

  • Giuseppe Arbia & Marco Bee & Giuseppe Espa, 2007. "Aggregation of regional economic time series with different spatial correlation structures," Department of Economics Working Papers 0720, Department of Economics, University of Trento, Italia.
  • Handle: RePEc:trn:utwpde:0720
    as

    Download full text from publisher

    File URL: http://www.unitn.it/files/20_07_arbia.pdf
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    2. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.

    More about this item

    Keywords

    Spatial correlation; Aggregation; Forecast efficiency; Space�time models; Edge effects; Negative spatial correlation.;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trn:utwpde:0720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Luciano Andreozzi (email available below). General contact details of provider: https://edirc.repec.org/data/detreit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.