IDEAS home Printed from https://ideas.repec.org/p/toh/dssraa/141.html
   My bibliography  Save this paper

Deep learning for multivariate volatility forecasting in high-dimensional financial time series

Author

Listed:
  • Rei Iwafuchi
  • Yasumasa Matsuda

Abstract

The market for investment trusts of large-scale portfolios, including index funds, continues to grow, and high-dimensional volatility estimation is essential for assessing the risks of such portfolios. However, multivariate volatility models suitable for high-dimensional data have not been extensively studied. This paper introduces a new framework based on the Spatial AR model, which provides fast and stable estimation, and demonstrates its application through simulations using historical data from the S&P 500.

Suggested Citation

  • Rei Iwafuchi & Yasumasa Matsuda, 2024. "Deep learning for multivariate volatility forecasting in high-dimensional financial time series," DSSR Discussion Papers 141, Graduate School of Economics and Management, Tohoku University.
  • Handle: RePEc:toh:dssraa:141
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10097/0002001327
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    2. He, Changli & Teräsvirta, Timo, 2004. "An Extended Constant Conditional Correlation Garch Model And Its Fourth-Moment Structure," Econometric Theory, Cambridge University Press, vol. 20(5), pages 904-926, October.
    3. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
    2. Jari Miettinen & Markus Matilainen & Klaus Nordhausen & Sara Taskinen, 2020. "Extracting Conditionally Heteroskedastic Components using Independent Component Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 293-311, March.
    3. Robert Garthoff & Iryna Okhrin & Wolfgang Schmid, 2014. "Statistical surveillance of the mean vector and the covariance matrix of nonlinear time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(3), pages 225-255, July.
    4. Silvennoinen, Annastiina & Teräsvirta, Timo, 2007. "Multivariate GARCH models," SSE/EFI Working Paper Series in Economics and Finance 669, Stockholm School of Economics, revised 18 Jan 2008.
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. de Almeida, Daniel & Hotta, Luiz K. & Ruiz, Esther, 2018. "MGARCH models: Trade-off between feasibility and flexibility," International Journal of Forecasting, Elsevier, vol. 34(1), pages 45-63.
    7. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    8. Li, Yuming, 1998. "Expected stock returns, risk premiums and volatilities of economic factors1," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 69-97, June.
    9. Jin, Xiaoye, 2015. "Volatility transmission and volatility impulse response functions among the Greater China stock markets," Journal of Asian Economics, Elsevier, vol. 39(C), pages 43-58.
    10. Chia-Lin Chang & Yiying Li & Michael McAleer, 2018. "Volatility Spillovers between Energy and Agricultural Markets: A Critical Appraisal of Theory and Practice," Energies, MDPI, vol. 11(6), pages 1-19, June.
    11. Roman Mestre, 2021. "A wavelet approach of investing behaviors and their effects on risk exposures," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-37, December.
    12. Seyoung Park & Eun Ryung Lee & Sungchul Lee & Geonwoo Kim, 2019. "Dantzig Type Optimization Method with Applications to Portfolio Selection," Sustainability, MDPI, vol. 11(11), pages 1-32, June.
    13. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.
    14. Brian Piper, 2014. "Factor-Specific Productivity," Working Papers 1401, Sam Houston State University, Department of Economics and International Business.
    15. Pierre Giot & Sébastien Laurent, 2003. "Value-at-risk for long and short trading positions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
    16. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    17. Ender Su & John Bilson, 2011. "Trading asymmetric trend and volatility by leverage trend GARCH in Taiwan stock index," Applied Economics, Taylor & Francis Journals, vol. 43(26), pages 3891-3905.
    18. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.
    19. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    20. Cathy W. S. Chen & Richard H. Gerlach & Ann M. H. Lin, 2011. "Multi-regime nonlinear capital asset pricing models," Quantitative Finance, Taylor & Francis Journals, vol. 11(9), pages 1421-1438, April.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:toh:dssraa:141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tohoku University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fetohjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.