IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2004cf270.html
   My bibliography  Save this paper

Minimaxity in Estimation of Restricted Parameters

Author

Listed:
  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Abstract

This paper is concerned with estimation of the restricted parameters in location and/or scale families from a decision-theoretic point of view. A simple method is provided to show the minimaxity of the best equivariant and unrestricted estimators. This is based on a modification of the known method of Girshick and Savage (1951) and can be applied to more complicated cases of restriction in the location-scale family. Classes of minimax estimators are also constructed by using the IERD method of Kubokawa (1994a, b): Especially, the paper succeeds in constructing such a class for estimating a restricted mean in a normal distribution with an unknown variance.

Suggested Citation

  • Tatsuya Kubokawa, 2004. "Minimaxity in Estimation of Restricted Parameters," CIRJE F-Series CIRJE-F-270, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2004cf270
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hisayuki Tsukuma & Tatsuya Kubokawa, 2012. "Minimaxity in Estimation of Restricted and Non-restricted Scale Parameter Matrices," CIRJE F-Series CIRJE-F-858, CIRJE, Faculty of Economics, University of Tokyo.
    2. Kubokawa, Tatsuya & Strawderman, William E., 2011. "A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1429-1444, November.
    3. Chang, Yuan-Tsung & Matsuda, Takeru & Strawderman, William E., 2019. "A note on improving on a vector of coordinate-wise estimators of non-negative means via shrinkage," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 143-150.
    4. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2008. "Stein's phenomenon in estimation of means restricted to a polyhedral convex cone," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 141-164, January.
    5. Yogesh Tripathi & Somesh Kumar & Constantinos Petropoulos, 2016. "Estimating the shape parameter of a Pareto distribution under restrictions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 91-111, January.
    6. Hisayuki Tsukuma & Tatsuya Kubokawa, 2015. "Minimaxity in estimation of restricted and non-restricted scale parameter matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 261-285, April.
    7. Tatsuya Kubokawa, 2010. "Minimax Estimation of Linear Combinations of Restricted Location Parameters," CIRJE F-Series CIRJE-F-723, CIRJE, Faculty of Economics, University of Tokyo.
    8. Mohammad Jafari Jozani & Éric Marchand & William Strawderman, 2014. "Estimation of a non-negative location parameter with unknown scale," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 811-832, August.
    9. Tatsuya Kubokawa & William E. Strawderman, 2011. "A Unified Approach to Non-minimaxity of Sets of Linear Combinations of Restricted Location Estimators," CIRJE F-Series CIRJE-F-786, CIRJE, Faculty of Economics, University of Tokyo.
    10. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E. & Turcotte, Jean-Philippe, 2013. "Minimaxity in predictive density estimation with parametric constraints," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 382-397.
    11. Tatsuya Kubokawa & William E. Strawderman, 2010. "Non-minimaxity of Linear Combinations of Restricted Location Estimators and Related Problems," CIRJE F-Series CIRJE-F-749, CIRJE, Faculty of Economics, University of Tokyo.
    12. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman & Jean-Philippe Turcotte, 2012. "Minimaxity in Predictive Density Estimation with Parametric Constraints," CIRJE F-Series CIRJE-F-843, CIRJE, Faculty of Economics, University of Tokyo.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2004cf270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.