IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v66y2014i4p811-832.html
   My bibliography  Save this article

Estimation of a non-negative location parameter with unknown scale

Author

Listed:
  • Mohammad Jafari Jozani
  • Éric Marchand
  • William Strawderman

Abstract

For a vast array of general spherically symmetric location-scale models with a residual vector, we consider estimating the (univariate) location parameter when it is lower bounded. We provide conditions for estimators to dominate the benchmark minimax MRE estimator, and thus be minimax under scale invariant loss. These minimax estimators include the generalized Bayes estimator with respect to the truncation of the common non-informative prior onto the restricted parameter space for normal models under general convex symmetric loss, as well as non-normal models under scale invariant $$L^p$$ L p loss with $$p>0$$ p > 0 . We cover many other situations when the loss is asymmetric, and where other generalized Bayes estimators, obtained with different powers of the scale parameter in the prior measure, are proven to be minimax. We rely on various novel representations, sharp sign change analyses, as well as capitalize on Kubokawa’s integral expression for risk difference technique. Several properties such as robustness of the generalized Bayes estimators under various loss functions are obtained. Copyright The Institute of Statistical Mathematics, Tokyo 2014

Suggested Citation

  • Mohammad Jafari Jozani & Éric Marchand & William Strawderman, 2014. "Estimation of a non-negative location parameter with unknown scale," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(4), pages 811-832, August.
  • Handle: RePEc:spr:aistmt:v:66:y:2014:i:4:p:811-832
    DOI: 10.1007/s10463-013-0425-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-013-0425-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-013-0425-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuzo Maruyama & Katsunori Iwasaki, 2005. "Sensitivity of minimaxity and admissibility in the estimation of a positive normal mean," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 145-156, March.
    2. Éric Marchand & William Strawderman, 2005. "Improving on the minimum risk equivariant estimator of a location parameter which is constrained to an interval or a half-interval," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(1), pages 129-143, March.
    3. Tatsuya Kubokawa, 2004. "Minimaxity in Estimation of Restricted Parameters," CIRJE F-Series CIRJE-F-270, CIRJE, Faculty of Economics, University of Tokyo.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fourdrinier, Dominique & Marchand, Éric & Strawderman, William E., 2019. "On efficient prediction and predictive density estimation for normal and spherically symmetric models," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 18-25.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman & Jean-Philippe Turcotte, 2012. "Minimaxity in Predictive Density Estimation with Parametric Constraints," CIRJE F-Series CIRJE-F-843, CIRJE, Faculty of Economics, University of Tokyo.
    2. Hisayuki Tsukuma & Tatsuya Kubokawa, 2015. "Minimaxity in estimation of restricted and non-restricted scale parameter matrices," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 261-285, April.
    3. Tatsuya Kubokawa & William E. Strawderman, 2011. "A Unified Approach to Non-minimaxity of Sets of Linear Combinations of Restricted Location Estimators," CIRJE F-Series CIRJE-F-786, CIRJE, Faculty of Economics, University of Tokyo.
    4. Tatsuya Kubokawa & William E. Strawderman, 2010. "Non-minimaxity of Linear Combinations of Restricted Location Estimators and Related Problems," CIRJE F-Series CIRJE-F-749, CIRJE, Faculty of Economics, University of Tokyo.
    5. Kubokawa, Tatsuya & Strawderman, William E., 2011. "A unified approach to non-minimaxity of sets of linear combinations of restricted location estimators," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1429-1444, November.
    6. Tatsuya Kubokawa, 2010. "Minimax Estimation of Linear Combinations of Restricted Location Parameters," CIRJE F-Series CIRJE-F-723, CIRJE, Faculty of Economics, University of Tokyo.
    7. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E. & Turcotte, Jean-Philippe, 2013. "Minimaxity in predictive density estimation with parametric constraints," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 382-397.
    8. Yogesh Tripathi & Somesh Kumar & Constantinos Petropoulos, 2016. "Estimating the shape parameter of a Pareto distribution under restrictions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(1), pages 91-111, January.
    9. Hisayuki Tsukuma & Tatsuya Kubokawa, 2012. "Minimaxity in Estimation of Restricted and Non-restricted Scale Parameter Matrices," CIRJE F-Series CIRJE-F-858, CIRJE, Faculty of Economics, University of Tokyo.
    10. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2008. "Stein's phenomenon in estimation of means restricted to a polyhedral convex cone," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 141-164, January.
    11. Kubokawa, Tatsuya & Marchand, Éric & Strawderman, William E., 2015. "On predictive density estimation for location families under integrated squared error loss," Journal of Multivariate Analysis, Elsevier, vol. 142(C), pages 57-74.
    12. Jafari Jozani, Mohammad & Marchand, Éric & Parsian, Ahmad, 2006. "On estimation with weighted balanced-type loss function," Statistics & Probability Letters, Elsevier, vol. 76(8), pages 773-780, April.
    13. Chang, Yuan-Tsung & Matsuda, Takeru & Strawderman, William E., 2019. "A note on improving on a vector of coordinate-wise estimators of non-negative means via shrinkage," Statistics & Probability Letters, Elsevier, vol. 153(C), pages 143-150.
    14. Tatsuya Kubokawa & Éric Marchand & William E. Strawderman, 2014. "On Predictive Density Estimation for Location Families under Integrated L 2 and L 1 Losses," CIRJE F-Series CIRJE-F-935, CIRJE, Faculty of Economics, University of Tokyo.
    15. Kucerovsky Dan & Marchand Eric & Najafabadi Amir T. Payandeh & Strawderman William E., 2009. "On the Bayesianity of maximum likelihood estimators of restricted location parameters under absolute value error loss," Statistics & Risk Modeling, De Gruyter, vol. 27(02), pages 145-168, December.
    16. Matsuda, Takeru & Strawderman, William E., 2016. "Pitman closeness properties of point estimators and predictive densities with parametric constraints," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 101-106.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:66:y:2014:i:4:p:811-832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.