IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2003cf248.html
   My bibliography  Save this paper

An Asymptotic Expansion Scheme for the Optimal Investment Problems

Author

Listed:
  • Akihiko Takahashi

    (Faculty of Economics and Graduate School of Mathematical Sciences, University of Tokyo)

  • Nakahiro Yoshida

    (Graduate School of Mathematical Sciences, University of Tokyo)

Abstract

We shall propose a new computational scheme for the evaluation of the optimal portfolio for investment.Our method is based on an extension of the asymptotic expansion approach which has been recently developed for pricing problems of the contingent claims' analysis by Kunitomo-Takahashi (1992, 1995, 1998, 2001), Yoshida (1992), Takahashi (1995, 1999),Takahashi and Yoshida (2001). In particular, we will explicitly derive a formula of the optimal portfolio associated with maximizing utility from terminal wealth in a nancial market with Markovian coe cients,and give a numerical example for a power utility function.

Suggested Citation

  • Akihiko Takahashi & Nakahiro Yoshida, 2003. "An Asymptotic Expansion Scheme for the Optimal Investment Problems," CIRJE F-Series CIRJE-F-248, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2003cf248
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2003/2003cf248.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    3. Naoto Kunitomo & Akihiko Takahashi, 1998. "On Validity of the Asymptotic Expansion Approach in Contingent Claim Analysis," CIRJE F-Series 98-F-6, CIRJE, Faculty of Economics, University of Tokyo.
    4. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    5. Naoto Kunitomo & Akihiko Takahashi, 2001. "The Asymptotic Expansion Approach to the Valuation of Interest Rate Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 117-151, January.
    6. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jérôme Detemple, 2014. "Portfolio Selection: A Review," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 1-21, April.
    2. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    3. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    4. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    5. Christensen, Peter Ove & Larsen, Kasper & Munk, Claus, 2012. "Equilibrium in securities markets with heterogeneous investors and unspanned income risk," Journal of Economic Theory, Elsevier, vol. 147(3), pages 1035-1063.
    6. Schwartz, Eduardo S & Tebaldi, Claudio, 2004. "Illiquid Assets and Optimal Portfolio Choice," University of California at Los Angeles, Anderson Graduate School of Management qt7q65t12x, Anderson Graduate School of Management, UCLA.
    7. Paolo BATTOCCHIO, 2002. "Optimal Portfolio Strategies with Stochastic Wage Income : The Case of A defined Contribution Pension Plan," LIDAM Discussion Papers IRES 2002005, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    8. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    9. Rytchkov, Oleg, 2016. "Time-Varying Margin Requirements and Optimal Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(2), pages 655-683, April.
    10. Takao Kobayashi & Akihiko Takahashi & Norio Tokioka, 2003. "Dynamic Optimality of Yield Curve Strategies," International Review of Finance, International Review of Finance Ltd., vol. 4(1‐2), pages 49-78, March.
    11. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    12. Lioui, Abraham & Poncet, Patrice, 2003. "International asset allocation: A new perspective," Journal of Banking & Finance, Elsevier, vol. 27(11), pages 2203-2230, November.
    13. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    14. Zvi Bodie & Jérôme Detemple & Marcel Rindisbacher, 2009. "Life-Cycle Finance and the Design of Pension Plans," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 249-286, November.
    15. Pablo Castañeda & Heinz Rudolph, 2010. "Portfolio Choice, Minimum Return Guarantees, and Competition in DC Pension Systems," Working Papers 39, Superintendencia de Pensiones, revised Feb 2010.
    16. Ivar Ekeland & Erik Taflin, 2003. "A theory of bond portfolios," Papers math/0301278, arXiv.org, revised May 2005.
    17. Castaneda, Pablo, 2005. "Portfolio Choice and Benchmarking: The Case of the Unemployment Insurance Fund in Chile," MPRA Paper 3346, University Library of Munich, Germany, revised 30 Dec 2006.
    18. repec:dau:papers:123456789/6041 is not listed on IDEAS
    19. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
    20. Naoto Kunitomo & Yong‐Jin Kim, 2007. "Effects Of Stochastic Interest Rates And Volatility On Contingent Claims," The Japanese Economic Review, Japanese Economic Association, vol. 58(1), pages 71-106, March.
    21. Castañeda, Pablo & Devoto, Benjamín, 2016. "On the structural estimation of an optimal portfolio rule," Finance Research Letters, Elsevier, vol. 16(C), pages 290-300.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2003cf248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.