IDEAS home Printed from https://ideas.repec.org/p/tky/fseres/2002cf180.html
   My bibliography  Save this paper

Prediction in Multivariate Mixed Linear Models

Author

Listed:
  • Tatsuka Kubokawa

    (Faculty of Economics, University of Tokyo)

  • M. S. Srivastava

    (University of Toronto)

Abstract

The multivariate mixed linear model or multivariate components of variance model with equal replications is considered.The paper addresses the problem of predicting the sum of the regression mean and the random e ects.When the feasible best linear unbiased predictors or empirical Bayes predictors are used,this prediction problem reduces to the estimation of the ratio of two covariance matrices.We propose scale invariant Stein type shrinkage estimators for the ratio of the two covariance matrices.Their dominance properties over the usual estimators including the unbiased one are established, and further domination results are shown by using information of order restriction between the two covariance matrices.It is also demonstrated that the empirical Bayes predictors that employs these improved estimators of the ratio of the two covariance matrices have uniformly smaller risks than the crude Efron-Morris type estimator in the context of estimation of a matrix mean in a xed e ects linear regression model where the components are unknown parameters.

Suggested Citation

  • Tatsuka Kubokawa & M. S. Srivastava, 2002. "Prediction in Multivariate Mixed Linear Models," CIRJE F-Series CIRJE-F-180, CIRJE, Faculty of Economics, University of Tokyo.
  • Handle: RePEc:tky:fseres:2002cf180
    as

    Download full text from publisher

    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2002/2002cf180.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tatsuya Kubokawa & M. S. Srivastava, 1999. "Prediction in Multivariate Mixed Linear Models with Equal Replications," CIRJE F-Series CIRJE-F-62, CIRJE, Faculty of Economics, University of Tokyo.
    2. Leo Breiman & Jerome H. Friedman, 1997. "Predicting Multivariate Responses in Multiple Linear Regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(1), pages 3-54.
    3. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kubokawa, T. & Srivastava, M. S., 2002. "Estimating Risk and the Mean Squared Error Matrix in Stein Estimation," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 39-64, July.
    2. Srivastava, M. S. & Kubokawa, T., 2005. "Minimax multivariate empirical Bayes estimators under multicollinearity," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 394-416, April.
    3. Tatsuya Kubokawa & M. S. Srivastava, 2002. "Minimax Multivariate Empirical Bayes Estimators under Multicollinearity," CIRJE F-Series CIRJE-F-187, CIRJE, Faculty of Economics, University of Tokyo.
    4. Oman, Samuel D., 2002. "Minimax Hierarchical Empirical Bayes Estimation in Multivariate Regression," Journal of Multivariate Analysis, Elsevier, vol. 80(2), pages 285-301, February.
    5. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    6. Jewson Stephen & Penzer Jeremy, 2006. "Estimating Trends in Weather Series: Consequences for Pricing Derivatives," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(3), pages 1-17, September.
    7. Luebke, Karsten & Czogiel, Irina & Weihs, Claus, 2004. "Latent Factor Prediction Pursuit for Rank Deficient Regressors," Technical Reports 2004,75, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    8. Seokhyun Chung & Raed Al Kontar & Zhenke Wu, 2022. "Weakly Supervised Multi-output Regression via Correlated Gaussian Processes," INFORMS Joural on Data Science, INFORMS, vol. 1(2), pages 115-137, October.
    9. Qiang Sun & Hongtu Zhu & Yufeng Liu & Joseph G. Ibrahim, 2015. "SPReM: Sparse Projection Regression Model For High-Dimensional Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 289-302, March.
    10. Tsukuma, Hisayuki, 2010. "Shrinkage priors for Bayesian estimation of the mean matrix in an elliptically contoured distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1483-1492, July.
    11. Simila, Timo & Tikka, Jarkko, 2007. "Input selection and shrinkage in multiresponse linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 406-422, September.
    12. Tsukuma, Hisayuki & Kubokawa, Tatsuya, 2007. "Methods for improvement in estimation of a normal mean matrix," Journal of Multivariate Analysis, Elsevier, vol. 98(8), pages 1592-1610, September.
    13. Hisayuki Tsukuma & Tatsuya Kubokawa, 2005. "Methods for Improvement in Estimation of a Normal Mean Matrix," CIRJE F-Series CIRJE-F-378, CIRJE, Faculty of Economics, University of Tokyo.
    14. Flandoli, F. & Giorgi, E. & Aspinall, W.P. & Neri, A., 2011. "Comparison of a new expert elicitation model with the Classical Model, equal weights and single experts, using a cross-validation technique," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1292-1310.
    15. ter Braak, Cajo J.F., 2006. "Bayesian sigmoid shrinkage with improper variance priors and an application to wavelet denoising," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1232-1242, November.
    16. Yuasa, Ryota & Kubokawa, Tatsuya, 2023. "Weighted shrinkage estimators of normal mean matrices and dominance properties," Journal of Multivariate Analysis, Elsevier, vol. 194(C).
    17. Lee, Wonyul & Liu, Yufeng, 2012. "Simultaneous multiple response regression and inverse covariance matrix estimation via penalized Gaussian maximum likelihood," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 241-255.
    18. Bingzhen Chen & Wenjuan Zhai & Lingchen Kong, 2022. "Variable selection and collinearity processing for multivariate data via row-elastic-net regularization," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(1), pages 79-96, March.
    19. Zehua Chen & Yiwei Jiang, 2020. "A two-stage sequential conditional selection approach to sparse high-dimensional multivariate regression models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 65-90, February.
    20. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2002cf180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CIRJE administrative office (email available below). General contact details of provider: https://edirc.repec.org/data/ritokjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.