IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/fc2ce516-9c34-4389-830f-f6f816d4ed8d.html
   My bibliography  Save this paper

Robust optimization of uncertain multistage inventory systems with inexact data in decision rules

Author

Listed:
  • de Ruiter, Frans

    (Tilburg University, School of Economics and Management)

  • Ben-Tal, A.

    (Tilburg University, School of Economics and Management)

  • Brekelmans, Ruud

    (Tilburg University, School of Economics and Management)

  • den Hertog, Dick

    (Tilburg University, School of Economics and Management)

Abstract

In production-inventory problems customer demand is often subject to uncertainty. Therefore, it is challenging to design production plans that satisfy both demand and a set of constraints on e.g. production capacity and required inventory levels. Adjustable robust optimization (ARO) is a technique to solve these dynamic (multistage) production-inventory problems. In ARO, the decision in each stage is a function of the data on the realizations of the uncertain demand gathered from the previous periods. These data, however, are often inaccurate; there is much evidence in the information management literature that data quality in inventory systems is often poor. Reliance on data “as is” may then lead to poor performance of “data-driven” methods such as ARO. In this paper, we remedy this weakness of ARO by introducing a model that treats past data itself as an uncertain model parameter. We show that computational tractability of the robust counterparts associated with this extension of ARO is still maintained. The benefits of the new model are demonstrated by a numerical test case of a well-studied production-inventory problem. Our approach is also applicable to other ARO models outside the realm of production-inventory planning.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • de Ruiter, Frans & Ben-Tal, A. & Brekelmans, Ruud & den Hertog, Dick, 2016. "Robust optimization of uncertain multistage inventory systems with inexact data in decision rules," Other publications TiSEM fc2ce516-9c34-4389-830f-f, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:fc2ce516-9c34-4389-830f-f6f816d4ed8d
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/20063949/Robust_optimization_of_uncertain_multistage_inventory_systems.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Paula Rocha & Daniel Kuhn, 2010. "Multistage Stochastic Portfolio Optimisation in Deregulated Electricity Markets Using Linear Decision Rules," Working Papers 040, COMISEF.
    2. Nicole DeHoratius & Ananth Raman, 2008. "Inventory Record Inaccuracy: An Empirical Analysis," Management Science, INFORMS, vol. 54(4), pages 627-641, April.
    3. Aharon Ben-Tal & Boaz Golany & Arkadi Nemirovski & Jean-Philippe Vial, 2005. "Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach," Manufacturing & Service Operations Management, INFORMS, vol. 7(3), pages 248-271, February.
    4. Dan A. Iancu & Mayank Sharma & Maxim Sviridenko, 2013. "Supermodularity and Affine Policies in Dynamic Robust Optimization," Operations Research, INFORMS, vol. 61(4), pages 941-956, August.
    5. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    6. de Ruiter, Frans & Brekelmans, Ruud & den Hertog, Dick, 2016. "The impact of the existence of multiple adjustable robust solutions," Other publications TiSEM eabf3802-3965-40ef-b26d-f, Tilburg University, School of Economics and Management.
    7. Ben-Tal, A. & den Hertog, D. & Vial, J.P., 2012. "Deriving Robust Counterparts of Nonlinear Uncertain Inequalities," Discussion Paper 2012-053, Tilburg University, Center for Economic Research.
    8. A. Gürhan Kök & Kevin H. Shang, 2007. "Inspection and Replenishment Policies for Systems with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 185-205, February.
    9. Guigues, Vincent & Sagastizábal, Claudia, 2012. "The value of rolling-horizon policies for risk-averse hydro-thermal planning," European Journal of Operational Research, Elsevier, vol. 217(1), pages 129-140.
    10. Rocha, Paula & Kuhn, Daniel, 2012. "Multistage stochastic portfolio optimisation in deregulated electricity markets using linear decision rules," European Journal of Operational Research, Elsevier, vol. 216(2), pages 397-408.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perraudat, Antoine & Dauzère-Pérès, Stéphane & Vialletelle, Philippe, 2022. "Robust tactical qualification decisions in flexible manufacturing systems," Omega, Elsevier, vol. 106(C).
    2. T. D. Chuong & V. Jeyakumar & G. Li & D. Woolnough, 2021. "Exact SDP reformulations of adjustable robust linear programs with box uncertainties under separable quadratic decision rules via SOS representations of non-negativity," Journal of Global Optimization, Springer, vol. 81(4), pages 1095-1117, December.
    3. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    4. Marcio Costa Santos & Michael Poss & Dritan Nace, 2018. "A perfect information lower bound for robust lot-sizing problems," Annals of Operations Research, Springer, vol. 271(2), pages 887-913, December.
    5. Ali Haddad-Sisakht & Sarah M. Ryan, 2018. "Conditions under which adjustability lowers the cost of a robust linear program," Annals of Operations Research, Springer, vol. 269(1), pages 185-204, October.
    6. Thai Doan Chuong & Xinghuo Yu & Chen Liu & Andrew Eberhard & Chaojie Li, 2024. "Solving Two-stage Quadratic Multiobjective Problems via Optimality and Relaxations," Journal of Optimization Theory and Applications, Springer, vol. 203(1), pages 676-713, October.
    7. Jonathan De La Vega & Alfredo Moreno & Reinaldo Morabito & Pedro Munari, 2023. "A robust optimization approach for the unrelated parallel machine scheduling problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 31-66, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    2. Viktoryia Buhayenko & Dick den Hertog, 2017. "Adjustable Robust Optimisation approach to optimise discounts for multi-period supply chain coordination under demand uncertainty," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6801-6823, November.
    3. Jianzhe Zhen & Ahmadreza Marandi & Danique de Moor & Dick den Hertog & Lieven Vandenberghe, 2022. "Disjoint Bilinear Optimization: A Two-Stage Robust Optimization Perspective," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2410-2427, September.
    4. de Moor, Danique & Wagenaar, Joris & Poos, Robert & den Hertog, Dick & Fleuren, Hein, 2024. "A robust approach to food aid supply chains," European Journal of Operational Research, Elsevier, vol. 318(1), pages 269-285.
    5. Phebe Vayanos & Qing Jin & George Elissaios, 2022. "ROC++: Robust Optimization in C++," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2873-2888, November.
    6. Hamed Mamani & Shima Nassiri & Michael R. Wagner, 2017. "Closed-Form Solutions for Robust Inventory Management," Management Science, INFORMS, vol. 63(5), pages 1625-1643, May.
    7. Feng Tao & Yanhong Xie & Yao-Yu Wang & Fujun Lai & Kin Keung Lai, 2022. "Contract strategies in competitive supply chains subject to inventory inaccuracy," Annals of Operations Research, Springer, vol. 309(2), pages 641-661, February.
    8. Agrawal, Paras M. & Sharda, Ramesh, 2012. "Impact of frequency of alignment of physical and information system inventories on out of stocks: A simulation study," International Journal of Production Economics, Elsevier, vol. 136(1), pages 45-55.
    9. Dan A. Iancu & Nikolaos Trichakis, 2014. "Pareto Efficiency in Robust Optimization," Management Science, INFORMS, vol. 60(1), pages 130-147, January.
    10. Li, Ming & Wang, Zheng & Chan, Felix T.S., 2016. "A robust inventory routing policy under inventory inaccuracy and replenishment lead-time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 290-305.
    11. Ricardo Montoya & Carlos Gonzalez, 2019. "A Hidden Markov Model to Detect On-Shelf Out-of-Stocks Using Point-of-Sale Data," Manufacturing & Service Operations Management, INFORMS, vol. 21(4), pages 932-948, October.
    12. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    13. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    14. Cannella, Salvatore & Dominguez, Roberto & Framinan, Jose M., 2017. "Inventory record inaccuracy – The impact of structural complexity and lead time variability," Omega, Elsevier, vol. 68(C), pages 123-138.
    15. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    16. de Ruiter, F.J.C.T. & Ben-Tal, A. & Brekelmans, R.C.M. & den Hertog, D., 2014. "Adjustable Robust Optimizations with Decision Rules Based on Inexact Revealed Data," Other publications TiSEM 9aa3440c-dc5a-4468-b892-1, Tilburg University, School of Economics and Management.
    17. Dimitris Bertsimas & Frans J. C. T. de Ruiter, 2016. "Duality in Two-Stage Adaptive Linear Optimization: Faster Computation and Stronger Bounds," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 500-511, August.
    18. Sarac, Aysegul & Absi, Nabil & Dauzère-Pérès, Stéphane, 2010. "A literature review on the impact of RFID technologies on supply chain management," International Journal of Production Economics, Elsevier, vol. 128(1), pages 77-95, November.
    19. Polinder, G.-J. & Breugem, T. & Dollevoet, T.A.B. & Maróti, G., 2019. "An Adjustable Robust Optimization Approach for Periodic Timetabling," Econometric Institute Research Papers EI2019-01, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Ning Zhang & Chang Fang, 2020. "Saddle point approximation approaches for two-stage robust optimization problems," Journal of Global Optimization, Springer, vol. 78(4), pages 651-670, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:fc2ce516-9c34-4389-830f-f6f816d4ed8d. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.