IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/f68a548c-8246-4e8c-bc75-8de019177735.html
   My bibliography  Save this paper

Product Innovation with Lumpy Investment

Author

Listed:
  • Chahim, M.

    (Tilburg University, School of Economics and Management)

  • Grass, D.
  • Hartl, R.F.
  • Kort, P.M.

    (Tilburg University, School of Economics and Management)

Abstract

The paper provides a framework that enables us to analyze the important topic of capital accumulation under technological progress. We describe an algorithm to solve Impulse Control problems, based on a (multipoint) boundary value problem approach. Investment takes place in lumps and we determine the optimal timing of technology adoptions as well as the size of the corresponding investments. Our numerical approach led to some guidelines for new technology investments. First, we find that investments are larger and occur in a later stadium when more of the old capital stock needs to be scrapped. Moreover, we obtain that the size of the firm’s investments increase when the technology produces more profitable products. We see that the firm in the beginning of the planning period adopts new technologies faster as time proceeds, but later on the opposite happens. Furthermore, we find that the firm does not invest such that marginal profit is zero, but instead marginal profit is negative.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Chahim, M. & Grass, D. & Hartl, R.F. & Kort, P.M., 2012. "Product Innovation with Lumpy Investment," Other publications TiSEM f68a548c-8246-4e8c-bc75-8, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:f68a548c-8246-4e8c-bc75-8de019177735
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1443763/2012-074.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    • M. Chahim & D. Grass & R. F. Hartl & P. M. Kort, 2017. "Product innovation with lumpy investment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 159-182, March.

    References listed on IDEAS

    as
    1. Boucekkine, Raouf & Saglam, Cagri & Valléee, Thomas, 2004. "Technology Adoption Under Embodiment: A Two-Stage Optimal Control Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 8(2), pages 250-271, April.
    2. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2006. "Anticipation effects of technological progress on capital accumulation: a vintage capital approach," Journal of Economic Theory, Elsevier, vol. 126(1), pages 143-164, January.
    3. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Discussion Paper 2012-081, Tilburg University, Center for Economic Research.
    4. Luhmer, Alfred, 1986. "A continuous time, deterministic, nonstationary model of economic ordering," European Journal of Operational Research, Elsevier, vol. 24(1), pages 123-135, January.
    5. Greenwood, Jeremy & Hercowitz, Zvi & Krusell, Per, 1997. "Long-Run Implications of Investment-Specific Technological Change," American Economic Review, American Economic Association, vol. 87(3), pages 342-362, June.
    6. Dieter Grass & Richard F. Hartl & Peter M. Kort, 2012. "Capital Accumulation and Embodied Technological Progress," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 588-614, August.
    7. Suresh P. Sethi, 2021. "Optimal Control Theory," Springer Texts in Business and Economics, Springer, edition 4, number 978-3-030-91745-6, October.
    8. Chahim, Mohammed & Hartl, Richard F. & Kort, Peter M., 2012. "A tutorial on the deterministic Impulse Control Maximum Principle: Necessary and sufficient optimality conditions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 18-26.
    9. Grass, D., 2012. "Numerical computation of the optimal vector field: Exemplified by a fishery model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(10), pages 1626-1658.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadana, Utsav & Reddy, Puduru Viswanadha & Zaccour, Georges, 2021. "Nash equilibria in nonzero-sum differential games with impulse control," European Journal of Operational Research, Elsevier, vol. 295(2), pages 792-805.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
    2. Chahim, M. & Hartl, R.F. & Kort, P.M., 2011. "The Deterministic Impulse Control Maximum Principle in Operations Research : Necessary and Sufficient Optimality Conditions (replaces CentER DP 2011-052)," Other publications TiSEM a7a21401-43e3-4ecc-977a-7, Tilburg University, School of Economics and Management.
    3. Chahim, M. & Brekelmans, R.C.M. & den Hertog, D. & Kort, P.M., 2012. "An Impulse Control Approach to Dike Height Optimization (Revised version of CentER DP 2011-097)," Discussion Paper 2012-079, Tilburg University, Center for Economic Research.
    4. Raouf Boucekkine & David De la Croix & Omar Licandro, 2011. "Vintage Capital Growth Theory: Three Breakthroughs," Working Papers 565, Barcelona School of Economics.
    5. Raouf Boucekkine & David Croix & Omar Licandro, 2004. "MODELLING VINTAGE STRUCTURES WITH DDEs: PRINCIPLES AND APPLICATIONS," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(3-4), pages 151-179.
    6. Elke Moser & Andrea Seidl & Gustav Feichtinger, 2014. "History-dependence in production-pollution-trade-off models: a multi-stage approach," Annals of Operations Research, Springer, vol. 222(1), pages 457-481, November.
    7. Parilina, Elena & Yao, Fanjun & Zaccour, Georges, 2024. "Pricing and investment in manufacturing and logistics when environmental reputation matters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    8. Dieter Grass & Richard F. Hartl & Peter M. Kort, 2012. "Capital Accumulation and Embodied Technological Progress," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 588-614, August.
    9. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Other publications TiSEM 1295ac64-8704-4e47-ae89-b, Tilburg University, School of Economics and Management.
    10. Thorsten Upmann & Stefan Behringer, 2017. "Harvesting a Remote Renewable Resource," CESifo Working Paper Series 6724, CESifo.
    11. Seidl, Andrea, 2019. "Zeno points in optimal control models with endogenous regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 100(C), pages 353-368.
    12. Cagri Saglam & Vladimir M. Veliov, 2008. "Role of Endogenous Vintage Specific Depreciation in the Optimal Behavior of Firms," International Journal of Economic Theory, The International Society for Economic Theory, vol. 4(3), pages 381-410, September.
    13. Vallée, Thomas & Moreno-Galbis, Eva, 2011. "Optimal time switching from tayloristic to holistic workplace organization," Structural Change and Economic Dynamics, Elsevier, vol. 22(3), pages 238-246, September.
    14. Feichtinger, Gustav & Hartl, Richard F. & Kort, Peter M. & Veliov, Vladimir M., 2008. "Financially constrained capital investments: The effects of disembodied and embodied technological progress," Journal of Mathematical Economics, Elsevier, vol. 44(5-6), pages 459-483, April.
    15. Richard F. Hartl & Peter M. Kort & Andrea Seidl, 2020. "Decisions on pricing, capacity investment, and introduction timing of new product generations in a durable-good monopoly," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(2), pages 497-519, June.
    16. Stefan Wrzaczek & Michael Kuhn & Ivan Frankovic, 2020. "Using Age Structure for a Multi-stage Optimal Control Model with Random Switching Time," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 1065-1082, March.
    17. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Discussion Paper 2012-081, Tilburg University, Center for Economic Research.
    18. Elke Moser & Dieter Grass & Gernot Tragler, 2016. "A non-autonomous optimal control model of renewable energy production under the aspect of fluctuating supply and learning by doing," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(3), pages 545-575, July.
    19. Sadana, Utsav & Reddy, Puduru Viswanadha & Zaccour, Georges, 2021. "Nash equilibria in nonzero-sum differential games with impulse control," European Journal of Operational Research, Elsevier, vol. 295(2), pages 792-805.
    20. Raouf Boucekkine & Fernando Del Río & Omar Licandro, 2003. "Embodied Technological Change, Learning‐by‐doing and the Productivity Slowdown," Scandinavian Journal of Economics, Wiley Blackwell, vol. 105(1), pages 87-98, March.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • D90 - Microeconomics - - Micro-Based Behavioral Economics - - - General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:f68a548c-8246-4e8c-bc75-8de019177735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.