IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i2p792-805.html
   My bibliography  Save this article

Nash equilibria in nonzero-sum differential games with impulse control

Author

Listed:
  • Sadana, Utsav
  • Reddy, Puduru Viswanadha
  • Zaccour, Georges

Abstract

In this paper, we introduce a class of deterministic finite-horizon two-player nonzero-sum differential games where one player uses ordinary controls while the other player uses impulse controls. We use the word ‘ordinary’ to mean that Player 1 uses control strategies that are piecewise continuous functions of time. We formulate the necessary and sufficient conditions for the existence of an open-loop Nash equilibrium for this class of differential games. We specialize these results to linear-quadratic games, and show that the open-loop Nash equilibrium strategies can be computed by solving a constrained non-linear optimization problem. In particular, for the impulse player, the equilibrium timing and level of impulses can be obtained. Furthermore, for the special case of linear-state differential games, we obtain analytical characterization of equilibrium number, timing, and the level of impulse in terms of the problem data. We illustrate our results using numerical experiments.

Suggested Citation

  • Sadana, Utsav & Reddy, Puduru Viswanadha & Zaccour, Georges, 2021. "Nash equilibria in nonzero-sum differential games with impulse control," European Journal of Operational Research, Elsevier, vol. 295(2), pages 792-805.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:2:p:792-805
    DOI: 10.1016/j.ejor.2021.03.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002514
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Other publications TiSEM 1295ac64-8704-4e47-ae89-b, Tilburg University, School of Economics and Management.
    2. René Aïd & Matteo Basei & Giorgia Callegaro & Luciano Campi & Tiziano Vargiolu, 2020. "Nonzero-Sum Stochastic Differential Games with Impulse Controls: A Verification Theorem with Applications," Mathematics of Operations Research, INFORMS, vol. 45(1), pages 205-232, February.
    3. Katrin Erdlenbruch & Alain Jean-Marie & Michel Moreaux & Mabel Tidball, 2013. "Optimality of impulse harvesting policies," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 52(2), pages 429-459, March.
    4. M. Chahim & D. Grass & R. F. Hartl & P. M. Kort, 2017. "Product innovation with lumpy investment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 159-182, March.
    5. Pierre Bernhard, 2006. "On The Singularities Of An Impulsive Differential Game Arising In Mathematical Finance," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 219-229.
    6. Chahim, Mohammed & Hartl, Richard F. & Kort, Peter M., 2012. "A tutorial on the deterministic Impulse Control Maximum Principle: Necessary and sufficient optimality conditions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 18-26.
    7. Alain Haurie & Jacek B Krawczyk & Georges Zaccour, 2012. "Games and Dynamic Games," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8442, February.
    8. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Discussion Paper 2012-081, Tilburg University, Center for Economic Research.
    9. Y. Liu & K. L. Teo & L. S. Jennings & S. Wang, 1998. "On a Class of Optimal Control Problems with State Jumps," Journal of Optimization Theory and Applications, Springer, vol. 98(1), pages 65-82, July.
    10. Reddy, Puduru V. & Wrzaczek, Stefan & Zaccour, Georges, 2016. "Quality effects in different advertising models - An impulse control approach," European Journal of Operational Research, Elsevier, vol. 255(3), pages 984-995.
    11. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
    12. Jerome F. Eastham & Kevin J. Hastings, 1988. "Optimal Impulse Control of Portfolios," Mathematics of Operations Research, INFORMS, vol. 13(4), pages 588-605, November.
    13. S. H. Hou & K. H. Wong, 2011. "Optimal Impulsive Control Problem with Application to Human Immunodeficiency Virus Treatment," Journal of Optimization Theory and Applications, Springer, vol. 151(2), pages 385-401, November.
    14. Perera, Sandun & Gupta, Varun & Buckley, Winston, 2020. "Management of online server congestion using optimal demand throttling," European Journal of Operational Research, Elsevier, vol. 285(1), pages 324-342.
    15. A. J. Novak & G. Feichtinger & G. Leitmann, 2010. "A Differential Game Related to Terrorism: Nash and Stackelberg Strategies," Journal of Optimization Theory and Applications, Springer, vol. 144(3), pages 533-555, March.
    16. Matteo Basei, 2018. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Papers 1803.08166, arXiv.org, revised Mar 2019.
    17. Luciano Campi & Davide Santis, 2020. "Nonzero-Sum Stochastic Differential Games Between an Impulse Controller and a Stopper," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 688-724, August.
    18. Matteo Basei, 2019. "Optimal price management in retail energy markets: an impulse control problem with asymptotic estimates," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 355-383, June.
    19. Giorgio Ferrari & Torben Koch, 2019. "On a strategic model of pollution control," Annals of Operations Research, Springer, vol. 275(2), pages 297-319, April.
    20. Bertrand Crettez & Naila Hayek, 2014. "Terrorists’ Eradication Versus Perpetual Terror War," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 679-702, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. De Giovanni, Pietro & Zaccour, Georges, 2023. "A survey of dynamic models of product quality," European Journal of Operational Research, Elsevier, vol. 307(3), pages 991-1007.
    2. Utsav Sadana & Puduru Viswanadha Reddy & Tamer Başar & Georges Zaccour, 2021. "Sampled-Data Nash Equilibria in Differential Games with Impulse Controls," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 999-1022, September.
    3. Guohui Guan & Zongxia Liang & Yi Xia, 2024. "Many-insurer robust games of reinsurance and investment under model uncertainty in incomplete markets," Papers 2412.09157, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diego Zabaljauregui, 2019. "A fixed-point policy-iteration-type algorithm for symmetric nonzero-sum stochastic impulse control games," Papers 1909.03574, arXiv.org, revised Jun 2020.
    2. Utsav Sadana & Puduru Viswanadha Reddy & Tamer Başar & Georges Zaccour, 2021. "Sampled-Data Nash Equilibria in Differential Games with Impulse Controls," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 999-1022, September.
    3. Diego Zabaljauregui, 2020. "Optimal market making under partial information and numerical methods for impulse control games with applications," Papers 2009.06521, arXiv.org.
    4. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Discussion Paper 2012-081, Tilburg University, Center for Economic Research.
    5. Ren'e Aid & Lamia Ben Ajmia & M'hamed Gaigi & Mohamed Mnif, 2021. "Nonzero-sum stochastic impulse games with an application in competitive retail energy markets," Papers 2112.10213, arXiv.org.
    6. Grass, D. & Chahim, M., 2012. "Numerical Algorithms for Deterministic Impulse Control Models with Applications," Other publications TiSEM 1295ac64-8704-4e47-ae89-b, Tilburg University, School of Economics and Management.
    7. Johanna Grames & Dieter Grass & Peter M. Kort & Alexia Prskawetz, 2019. "Optimal investment and location decisions of a firm in a flood risk area using impulse control theory," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(4), pages 1051-1077, December.
    8. De Giovanni, Pietro & Zaccour, Georges, 2023. "A survey of dynamic models of product quality," European Journal of Operational Research, Elsevier, vol. 307(3), pages 991-1007.
    9. M. Chahim & D. Grass & R. F. Hartl & P. M. Kort, 2017. "Product innovation with lumpy investment," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(1), pages 159-182, March.
    10. Chahim, Mohammed & Hartl, Richard F. & Kort, Peter M., 2012. "A tutorial on the deterministic Impulse Control Maximum Principle: Necessary and sufficient optimality conditions," European Journal of Operational Research, Elsevier, vol. 219(1), pages 18-26.
    11. Perera, Sandun & Gupta, Varun & Buckley, Winston, 2020. "Management of online server congestion using optimal demand throttling," European Journal of Operational Research, Elsevier, vol. 285(1), pages 324-342.
    12. Korn, Ralf & Melnyk, Yaroslav & Seifried, Frank Thomas, 2017. "Stochastic impulse control with regime-switching dynamics," European Journal of Operational Research, Elsevier, vol. 260(3), pages 1024-1042.
    13. Mike Ludkovski, 2022. "Regression Monte Carlo for Impulse Control," Papers 2203.06539, arXiv.org.
    14. Cao, Haoyang & Guo, Xin, 2022. "MFGs for partially reversible investment," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 995-1014.
    15. Rongtao Chen & Shiguo Peng, 2023. "Leader-Follower Quasi-Consensus of Multi-Agent Systems with Packet Loss Using Event-Triggered Impulsive Control," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    16. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2021. "From firm to global-level pollution control: The case of transboundary pollution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 331-345.
    17. Lu Xiao & Huacong Ding & Yu Zhong & Chaojie Wang, 2023. "Optimal Control of Industrial Pollution under Stochastic Differential Models," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    18. Agnieszka Wiszniewska-Matyszkiel & Rajani Singh, 2020. "When Inaccuracies in Value Functions Do Not Propagate on Optima and Equilibria," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
    19. Christoph Belak & Lukas Mich & Frank T. Seifried, 2019. "Optimal Investment for Retail Investors with Flooredand Capped Costs," Working Paper Series 2019-06, University of Trier, Research Group Quantitative Finance and Risk Analysis.
    20. Anna Castañer & Jesús Marín-Solano & Carmen Ribas, 2021. "A time consistent dynamic bargaining procedure in differential games with hterogeneous discounting," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 555-584, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:2:p:792-805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.