IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/8291f06c-a796-4587-914e-c16303f37696.html
   My bibliography  Save this paper

Firm size and bankruptcy elasticity

Author

Listed:
  • Wijn, M.F.C.M.

    (Tilburg University, School of Economics and Management)

  • Bijnen, E.J.

Abstract

No abstract is available for this item.

Suggested Citation

  • Wijn, M.F.C.M. & Bijnen, E.J., 2001. "Firm size and bankruptcy elasticity," Other publications TiSEM 8291f06c-a796-4587-914e-c, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:8291f06c-a796-4587-914e-c16303f37696
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1257262/WMFCMBEJ5618031.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    2. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure - Reply," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 123-127.
    3. Beaver, Wh, 1966. "Financial Ratios As Predictors Of Failure," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 71-111.
    4. Platt, Harlan D. & Platt, Marjorie B., 1991. "A note on the use of industry-relative ratios in bankruptcy prediction," Journal of Banking & Finance, Elsevier, vol. 15(6), pages 1183-1194, December.
    5. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    6. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christian Lohmann & Thorsten Ohliger, 2020. "Bankruptcy prediction and the discriminatory power of annual reports: empirical evidence from financially distressed German companies," Journal of Business Economics, Springer, vol. 90(1), pages 137-172, February.
    2. Thomas E. Mckee, 2000. "Developing a bankruptcy prediction model via rough sets theory," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 9(3), pages 159-173, September.
    3. Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
    4. Koen W. de Bock, 2017. "The best of two worlds: Balancing model strength and comprehensibility in business failure prediction using spline-rule ensembles," Post-Print hal-01588059, HAL.
    5. Douglas, Ella & Lont, David & Scott, Tom, 2014. "Finance company failure in New Zealand during 2006–2009: Predictable failures?," Journal of Contemporary Accounting and Economics, Elsevier, vol. 10(3), pages 277-295.
    6. Katarina Valaskova & Dominika Gajdosikova & Jaroslav Belas, 2023. "Bankruptcy prediction in the post-pandemic period: A case study of Visegrad Group countries," Oeconomia Copernicana, Institute of Economic Research, vol. 14(1), pages 253-293, March.
    7. George Giannopoulos & Sophia Ali Sardar & Rebecca Salti & Nicos Sykianakis, 2022. "Analyzing Insolvency Prediction Models in the Period Before and After the Financial Crisis: A Case Study on the Example of US Firms," International Journal of Finance, Insurance and Risk Management, International Journal of Finance, Insurance and Risk Management, vol. 12(3), pages 23-45.
    8. Fayçal Mraihi & Inane Kanzari, 2019. "Predicting financial distress of companies: Comparison between multivariate discriminant analysis and multilayer perceptron for Tunisian case," Working Papers 1328, Economic Research Forum, revised 21 Aug 2019.
    9. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    10. Paras Arora & Suman Saurabh, 2022. "Predicting distress: a post Insolvency and Bankruptcy Code 2016 analysis," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 46(3), pages 604-622, July.
    11. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    12. Wijn, M.F.C.M. & Bijnen, E.J., 2001. "Firm size and bankruptcy elasticity," Research Memorandum FEW797, Tilburg University, School of Economics and Management.
    13. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    14. Soo Young Kim, 2018. "Predicting hospitality financial distress with ensemble models: the case of US hotels, restaurants, and amusement and recreation," Service Business, Springer;Pan-Pacific Business Association, vol. 12(3), pages 483-503, September.
    15. Oliver Lukason & Art Andresson, 2019. "Tax Arrears Versus Financial Ratios in Bankruptcy Prediction," JRFM, MDPI, vol. 12(4), pages 1-13, December.
    16. Scalzer, Rodrigo S. & Rodrigues, Adriano & Macedo, Marcelo Álvaro da S. & Wanke, Peter, 2019. "Financial distress in electricity distributors from the perspective of Brazilian regulation," Energy Policy, Elsevier, vol. 125(C), pages 250-259.
    17. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    18. Róbert Štefko & Jarmila Horváthová & Martina Mokrišová, 2020. "Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses," JRFM, MDPI, vol. 13(9), pages 1-15, September.
    19. Huang, Chao & Dai, Chong & Guo, Miao, 2015. "A hybrid approach using two-level DEA for financial failure prediction and integrated SE-DEA and GCA for indicators selection," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 431-441.
    20. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:8291f06c-a796-4587-914e-c16303f37696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.