IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/c94095bf-9069-47e6-b77e-5e08c1382439.html
   My bibliography  Save this paper

Constrained Optimization Involving Expensive Function Evaluations : A Sequential Approach

Author

Listed:
  • Brekelmans, R.C.M.

    (Tilburg University, Center For Economic Research)

  • Driessen, L.
  • Hamers, H.J.M.

    (Tilburg University, Center For Economic Research)

  • den Hertog, D.

    (Tilburg University, Center For Economic Research)

Abstract

This paper presents a new sequential method for constrained non-linear optimization problems.The principal characteristics of these problems are very time consuming function evaluations and the absence of derivative information. Such problems are common in design optimization, where time consuming function evaluations are carried out by simulation tools (e.g., FEM, CFD).Classical optimization methods, based on derivatives, are not applicable because often derivative information is not available and is too expensive to approximate through finite differencing.The algorithm first creates an experimental design. In the design points the underlying functions are evaluated.Local linear approximations of the real model are obtained with help of weighted regression techniques.The approximating model is then optimized within a trust region to find the best feasible objective improving point.This trust region moves along the most promising direction, which is determined on the basis of the evaluated objective values and constraint violations combined in a filter criterion.If the geometry of the points that determine the local approximations becomes bad, i.e. the points are located in such a way that they result in a bad approximation of the actual model, then we evaluate a geometry improving instead of an objective improving point.In each iteration a new local linear approximation is built, and either a new point is evaluated (objective or geometry improving) or the trust region is decreased.Convergence of the algorithm is guided by the size of this trust region.The focus of the approach is on getting good solutions with a limited number of function evaluations (not necessarily on reaching high accuracy).
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Brekelmans, R.C.M. & Driessen, L. & Hamers, H.J.M. & den Hertog, D., 2001. "Constrained Optimization Involving Expensive Function Evaluations : A Sequential Approach," Discussion Paper 2001-87, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:c94095bf-9069-47e6-b77e-5e08c1382439
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/540434/87.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Driessen, L. & Brekelmans, R.C.M. & Hamers, H.J.M. & den Hertog, D., 2001. "On D-Optimality Based Trust Regions for Black-Box Optimization Problems," Discussion Paper 2001-69, Tilburg University, Center for Economic Research.
    2. den Hertog, Dick & Stehouwer, Peter, 2002. "Optimizing color picture tubes by high-cost nonlinear programming," European Journal of Operational Research, Elsevier, vol. 140(2), pages 197-211, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Driessen, L. & Brekelmans, R.C.M. & Hamers, H.J.M. & den Hertog, D., 2001. "On D-Optimality Based Trust Regions for Black-Box Optimization Problems," Other publications TiSEM dcde83b3-cab6-48bd-b94d-7, Tilburg University, School of Economics and Management.
    2. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    3. ten Eikelder, S.C.M. & van Amerongen, J.H.M., 2023. "Resource allocation problems with expensive function evaluations," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1170-1185.
    4. Regis, Rommel G. & Shoemaker, Christine A., 2007. "Parallel radial basis function methods for the global optimization of expensive functions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 514-535, October.
    5. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    6. Miriyala, Srinivas Soumitri & Subramanian, Venkat & Mitra, Kishalay, 2018. "TRANSFORM-ANN for online optimization of complex industrial processes: Casting process as case study," European Journal of Operational Research, Elsevier, vol. 264(1), pages 294-309.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Angun, M.E., 2004. "Black box simulation optimization : Generalized response surface methodology," Other publications TiSEM 2548e953-54ce-44e2-8c5b-7, Tilburg University, School of Economics and Management.
    2. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Other publications TiSEM ab77f6f2-248a-42f1-bde1-0, Tilburg University, School of Economics and Management.
    3. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    4. Driessen, L. & Brekelmans, R.C.M. & Gerichhausen, M. & Hamers, H.J.M. & den Hertog, D., 2006. "Why Methods for Optimization Problems with Time-Consuming Function Evaluations and Integer Variables Should Use Global Approximation Models," Other publications TiSEM 45a73d28-9fed-4b4c-a909-1, Tilburg University, School of Economics and Management.
    5. Jianzhe Zhen & Dick den Hertog, 2018. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 31-42, February.
    6. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    7. Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
    8. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    9. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    10. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    11. Kleijnen, Jack P. C. & den Hertog, Dick & Angun, Ebru, 2004. "Response surface methodology's steepest ascent and step size revisited," European Journal of Operational Research, Elsevier, vol. 159(1), pages 121-131, November.
    12. E Angün & J Kleijnen & D den Hertog & G Gürkan, 2009. "Response surface methodology with stochastic constraints for expensive simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 735-746, June.
    13. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    14. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    15. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Other publications TiSEM 1c504ec0-f357-42d2-9c92-9, Tilburg University, School of Economics and Management.
    16. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    17. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Other publications TiSEM 1b5d18c7-b66f-4a9f-838c-b, Tilburg University, School of Economics and Management.
    18. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    19. Yanikoglu, I. & den Hertog, D., 2011. "Safe Approximations of Chance Constraints Using Historical Data," Discussion Paper 2011-137, Tilburg University, Center for Economic Research.
    20. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Discussion Paper 2005-79, Tilburg University, Center for Economic Research.

    More about this item

    Keywords

    optimization; nonlinear programming;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:c94095bf-9069-47e6-b77e-5e08c1382439. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.