IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/bb044e22-c7f1-41f2-b4d9-2d5f820347d5.html
   My bibliography  Save this paper

Polynomial Time Algorithms for Estimation of Rare Events in Queueing Models

Author

Listed:
  • Kriman, V.

    (Tilburg University, Center For Economic Research)

  • Rubinstein, R.Y.

    (Tilburg University, Center For Economic Research)

Abstract

No abstract is available for this item.

Suggested Citation

  • Kriman, V. & Rubinstein, R.Y., 1995. "Polynomial Time Algorithms for Estimation of Rare Events in Queueing Models," Discussion Paper 1995-12, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:bb044e22-c7f1-41f2-b4d9-2d5f820347d5
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/520706/12.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter W. Glynn & Donald L. Iglehart, 1989. "Importance Sampling for Stochastic Simulations," Management Science, INFORMS, vol. 35(11), pages 1367-1392, November.
    2. Benjamin Melamed, 1991. "TES: A Class of Methods for Generating Autocorrelated Uniform Variates," INFORMS Journal on Computing, INFORMS, vol. 3(4), pages 317-329, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Søren Asmussen & Reuven Y. Rubinstein, 1999. "Sensitivity Analysis of Insurance Risk Models via Simulation," Management Science, INFORMS, vol. 45(8), pages 1125-1141, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kriman, V. & Rubinstein, R.Y., 1995. "Polynomial Time Algorithms for Estimation of Rare Events in Queueing Models," Other publications TiSEM bb044e22-c7f1-41f2-b4d9-2, Tilburg University, School of Economics and Management.
    2. Philippe Jehiel & Jakub Steiner, 2020. "Selective Sampling with Information-Storage Constraints [On interim rationality, belief formation and learning in decision problems with bounded memory]," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1753-1781.
    3. Prusty, B Rajanarayan & Jena, Debashisha, 2017. "A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1286-1302.
    4. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2015. "A risk model with renewal shot-noise Cox process," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 55-65.
    5. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    6. Sandeep Juneja & Perwez Shahabuddin, 2001. "Fast Simulation of Markov Chains with Small Transition Probabilities," Management Science, INFORMS, vol. 47(4), pages 547-562, April.
    7. Kaynar, Bahar & Ridder, Ad, 2010. "The cross-entropy method with patching for rare-event simulation of large Markov chains," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1380-1397, December.
    8. Tito Homem-de-Mello, 2007. "A Study on the Cross-Entropy Method for Rare-Event Probability Estimation," INFORMS Journal on Computing, INFORMS, vol. 19(3), pages 381-394, August.
    9. N-H Shih, 2005. "Estimating completion-time distribution in stochastic activity networks," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 744-749, June.
    10. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    11. T. P. I. Ahamed & V. S. Borkar & S. Juneja, 2006. "Adaptive Importance Sampling Technique for Markov Chains Using Stochastic Approximation," Operations Research, INFORMS, vol. 54(3), pages 489-504, June.
    12. Basrak, Bojan & Conroy, Michael & Olvera-Cravioto, Mariana & Palmowski, Zbigniew, 2022. "Importance sampling for maxima on trees," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 139-179.
    13. Francesco Strino & Fabio Parisi & Yuval Kluger, 2011. "VDA, a Method of Choosing a Better Algorithm with Fewer Validations," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-8, October.
    14. Xie, Junfei & Wan, Yan & Mills, Kevin & Filliben, James J. & Lei, Yu & Lin, Zongli, 2019. "M-PCM-OFFD: An effective output statistics estimation method for systems of high dimensional uncertainties subject to low-order parameter interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 159(C), pages 93-118.
    15. Gamze Tokol & David Goldsman & Daniel H. Ockerman & James J. Swain, 1998. "Standardized Time Series Lp-Norm Variance Estimators for Simulations," Management Science, INFORMS, vol. 44(2), pages 234-245, February.
    16. Frikha Noufel & Sagna Abass, 2012. "Quantization based recursive importance sampling," Monte Carlo Methods and Applications, De Gruyter, vol. 18(4), pages 287-326, December.
    17. Steiner, Jakub & Jehiel, Philippe, 2017. "On Second Thoughts, Selective Memory, and Resulting Behavioral Biases," CEPR Discussion Papers 12546, C.E.P.R. Discussion Papers.
    18. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Mandjes, M., 1993. "Fast simulation of Markov fluid models in conjunction with large deviations," Serie Research Memoranda 0058, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    20. Bahar Kaynar & Ad Ridder, 2009. "The Cross-Entropy Method with Patching for Rare-Event Simulation of Large Markov Chains," Tinbergen Institute Discussion Papers 09-084/4, Tinbergen Institute.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:bb044e22-c7f1-41f2-b4d9-2d5f820347d5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.