Approximation of convex curves with application to the bicriterial minimum cost flow problem
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Quariguasi Frota Neto, J. & Walther, G. & Bloemhof, J. & van Nunen, J.A.E.E. & Spengler, T., 2009.
"A methodology for assessing eco-efficiency in logistics networks,"
European Journal of Operational Research, Elsevier, vol. 193(3), pages 670-682, March.
- Quariguasi Frota Neto, J. & Walther, G. & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & Spengler, T., 2006. "A Methodology for Assessing Eco-efficiency in Logistics Networks," ERIM Report Series Research in Management ERS-2006-075-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Quariguasi Frota Neto, J. & Walther, G. & Bloemhof-Ruwaard, J.M. & van Nunen, J.A.E.E. & Spengler, T., 2007. "A Methodology for Assessing Eco-Efficiency in Logistics Networks," ERIM Report Series Research in Management ERS-2007-037-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2005. "Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing," Discussion Paper 2005-132, Tilburg University, Center for Economic Research.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2008.
"The effect of transformations on the approximation of univariate (convex) functions with applications to Pareto curves,"
European Journal of Operational Research, Elsevier, vol. 189(2), pages 347-362, September.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2006. "The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves," Other publications TiSEM 6a6f7eff-fa7e-4531-84e1-6, Tilburg University, School of Economics and Management.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2006. "The Effect of Transformations on the Approximation of Univariate (Convex) Functions with Applications to Pareto Curves," Discussion Paper 2006-66, Tilburg University, Center for Economic Research.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Other publications TiSEM a3afe119-3957-4700-a895-4, Tilburg University, School of Economics and Management.
- Rainer E. Burkard & Horst W. Hamacher & Günter Rote, 1991. "Sandwich approximation of univariate convex functions with an application to separable convex programming," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(6), pages 911-924, December.
- Siem, A.Y.D. & den Hertog, D. & Hoffmann, A.L., 2007. "A Method For Approximating Univariate Convex Functions Using Only Function Value Evaluations," Discussion Paper 2007-67, Tilburg University, Center for Economic Research.
- A. Y. D. Siem & D. den Hertog & A. L. Hoffmann, 2011. "A Method for Approximating Univariate Convex Functions Using Only Function Value Evaluations," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 591-604, November.
- Hamacher, Horst W. & Pedersen, Christian Roed & Ruzika, Stefan, 2007. "Multiple objective minimum cost flow problems: A review," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1404-1422, February.
- Liu, Y. & Teo, K. L. & Yang, X. Q., 1999. "Approximation methods for non-convex curves," European Journal of Operational Research, Elsevier, vol. 117(1), pages 125-135, August.
- Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Xie, Chi & Travis Waller, S., 2012. "Parametric search and problem decomposition for approximating Pareto-optimal paths," Transportation Research Part B: Methodological, Elsevier, vol. 46(8), pages 1043-1067.
- Rasmus Bokrantz & Anders Forsgren, 2013. "An Algorithm for Approximating Convex Pareto Surfaces Based on Dual Techniques," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 377-393, May.
- Dung-Ying Lin & Chi Xie, 2011. "The Pareto-optimal Solution Set of the Equilibrium Network Design Problem with Multiple Commensurate Objectives," Networks and Spatial Economics, Springer, vol. 11(4), pages 727-751, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:42:y:1989:i:3:p:326-338. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.