IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/65e5595c-7ec1-4723-bf0e-8e12ed266ee5.html
   My bibliography  Save this paper

Estimating the Maximum Possible Earthquake Magnitude Using Extreme Value Methodology : the Groningen Case

Author

Listed:
  • Beirlant, J.
  • Kijko, Andrzej
  • Reykens, Tom
  • Einmahl, John

    (Tilburg University, Center For Economic Research)

Abstract

The area-characteristic, maximum possible earthquake magnitude $$T_M$$ T M is required by the earthquake engineering community, disaster management agencies and the insurance industry. The Gutenberg–Richter law predicts that earthquake magnitudes M follow a truncated exponential distribution. In the geophysical literature, several estimation procedures were proposed, see for instance, Kijko and Singh (Acta Geophys 59(4):674–700, 2011) and the references therein. Estimation of $$T_M$$ T M is of course an extreme value problem to which the classical methods for endpoint estimation could be applied. We argue that recent methods on truncated tails at high levels (Beirlant et al. Extremes 19(3):429–462, 2016; Electron J Stat 11:2026–2065, 2017) constitute a more appropriate setting for this estimation problem. We present upper confidence bounds to quantify uncertainty of the point estimates. We also compare methods from the extreme value and geophysical literature through simulations. Finally, the different methods are applied to the magnitude data for the earthquakes induced by gas extraction in the Groningen province of the Netherlands.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Beirlant, J. & Kijko, Andrzej & Reykens, Tom & Einmahl, John, 2017. "Estimating the Maximum Possible Earthquake Magnitude Using Extreme Value Methodology : the Groningen Case," Discussion Paper 2017-050, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:65e5595c-7ec1-4723-bf0e-8e12ed266ee5
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/19635627/2017_050.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aban, Inmaculada B. & Meerschaert, Mark M. & Panorska, Anna K., 2006. "Parameter Estimation for the Truncated Pareto Distribution," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 270-277, March.
    2. Einmahl, J. H.J. & Dekkers, A. L.M. & de Haan, L., 1989. "A moment estimator for the index of an extreme-value distribution," Other publications TiSEM 81970cb3-5b7a-4cad-9bf6-2, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2021. "Mixed POT-BM Approach for Modeling Unhealthy Air Pollution Events," IJERPH, MDPI, vol. 18(13), pages 1-17, June.
    2. Minakshi Mishra & Abhishek & R. B. S. Yadav & Manisha Sandhu, 2021. "Probabilistic assessment of earthquake hazard in the Andaman–Nicobar–Sumatra region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 313-338, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fátima Brilhante, M. & Ivette Gomes, M. & Pestana, Dinis, 2013. "A simple generalisation of the Hill estimator," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 518-535.
    2. Igor Fedotenkov, 2020. "A Review of More than One Hundred Pareto-Tail Index Estimators," Statistica, Department of Statistics, University of Bologna, vol. 80(3), pages 245-299.
    3. Marco Rocco, 2011. "Extreme value theory for finance: a survey," Questioni di Economia e Finanza (Occasional Papers) 99, Bank of Italy, Economic Research and International Relations Area.
    4. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.
    5. Kwame Boamah‐Addo & Tomasz J. Kozubowski & Anna K. Panorska, 2023. "A discrete truncated Zipf distribution," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 77(2), pages 156-187, May.
    6. Wang, Yulong & Xiao, Zhijie, 2022. "Estimation and inference about tail features with tail censored data," Journal of Econometrics, Elsevier, vol. 230(2), pages 363-387.
    7. Gadea Rivas, María Dolores & Gonzalo, Jesús & Olmo, José, 2024. "Testing extreme warming and geographical heterogeneity," UC3M Working papers. Economics 45023, Universidad Carlos III de Madrid. Departamento de Economía.
    8. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    9. Marek Arendarczyk & Tomasz J. Kozubowski & Anna K. Panorska, 2022. "The Greenwood statistic, stochastic dominance, clustering and heavy tails," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 331-352, March.
    10. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    11. Einmahl, J.H.J. & de Haan, L.F.M. & Krajina, A., 2009. "Estimating Extreme Bivariate Quantile Regions," Other publications TiSEM 007ce0a9-dd94-4301-ad62-1, Tilburg University, School of Economics and Management.
    12. Ekaterina Morozova & Vladimir Panov, 2021. "Extreme Value Analysis for Mixture Models with Heavy-Tailed Impurity," Mathematics, MDPI, vol. 9(18), pages 1-24, September.
    13. Estate Khmaladze & Wolfgang Weil, 2008. "Local empirical processes near boundaries of convex bodies," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(4), pages 813-842, December.
    14. Hürlimann, Werner, 2015. "On the uniform random upper bound family of first significant digit distributions," Journal of Informetrics, Elsevier, vol. 9(2), pages 349-358.
    15. Khieu, Hoang & Wälde, Klaus, 2023. "Capital income risk and the dynamics of the wealth distribution," Economic Modelling, Elsevier, vol. 122(C).
    16. Einmahl, John H.J. & de Haan, Laurens & Sinha, Ashoke Kumar, 1997. "Estimating the spectral measure of an extreme value distribution," Stochastic Processes and their Applications, Elsevier, vol. 70(2), pages 143-171, October.
    17. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    18. Einmahl, J.H.J. & Li, Jun & Liu, Regina, 2015. "Bridging Centrality and Extremity : Refining Empirical Data Depth using Extreme Value Statistics," Discussion Paper 2015-020, Tilburg University, Center for Economic Research.
    19. Marta Ferreira, 2024. "Extremal index: estimation and resampling," Computational Statistics, Springer, vol. 39(5), pages 2703-2720, July.
    20. Ghosh, Souvik & Resnick, Sidney, 2010. "A discussion on mean excess plots," Stochastic Processes and their Applications, Elsevier, vol. 120(8), pages 1492-1517, August.

    More about this item

    Keywords

    Anthropogenic seismicity; endpoint estimation; Extreme value theory; truncation;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:65e5595c-7ec1-4723-bf0e-8e12ed266ee5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.