IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20220097.html
   My bibliography  Save this paper

Na?ve Learning in Social Networks with Fake News: Bots as a Singularity

Author

Listed:
  • Saeed Badri

    (Vrije Universiteit Amsterdam)

  • Bernd Heidergott

    (Vrije Universiteit Amsterdam)

  • Ines Lindner

    (Vrije Universiteit Amsterdam)

Abstract

We study the impact of bots on social learning in a social network setting. Regular agents receive independent noisy signals about the true value of a variable and then communicate in a network. They na¨?vely update beliefs by repeatedly taking weighted averages of neighbors’ opinions. Bots are agents in the network that spread fake news by disseminating biased information. Our main contributions are threefold. (1) We show that the consensus of the network is a mapping of the interaction rate between the agents and bots and is discontinuous at zero mass of bots. This implies that even a comparatively “infinitesimal” small number of bots still has a sizeable impact on the consensus and hence represents an obstruction to the “wisdom of crowds”. (2) We prove that the consensus gap induced by the marginal presence of bots depends neither on the agent network or bot layout nor on the assumed connection structure between agents and bots. (3) We show that before the ultimate (and bot-infected) consensus is reached, the network passes through a quasi-stationary phase which has the potential to mitigate the harmful impact of bots.

Suggested Citation

  • Saeed Badri & Bernd Heidergott & Ines Lindner, 2022. "Na?ve Learning in Social Networks with Fake News: Bots as a Singularity," Tinbergen Institute Discussion Papers 22-097/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20220097
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/22097.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venkatesh Bala & Sanjeev Goyal, 1998. "Learning from Neighbours," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 595-621.
    2. Vincent Boucher, 2015. "Structural Homophily," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 235-264, February.
    3. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    4. Peter M. DeMarzo & Dimitri Vayanos & Jeffrey Zwiebel, 2003. "Persuasion Bias, Social Influence, and Unidimensional Opinions," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 909-968.
    5. Glenn Ellison & Drew Fudenberg, 1995. "Word-of-Mouth Communication and Social Learning," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 93-125.
    6. Gale, Douglas & Kariv, Shachar, 2003. "Bayesian learning in social networks," Games and Economic Behavior, Elsevier, vol. 45(2), pages 329-346, November.
    7. Vincent Boucher, 2015. "Structural Homophily," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(1), pages 235-264, February.
    8. Kazutoshi Sasahara & Wen Chen & Hao Peng & Giovanni Luca Ciampaglia & Alessandro Flammini & Filippo Menczer, 2021. "Social influence and unfollowing accelerate the emergence of echo chambers," Journal of Computational Social Science, Springer, vol. 4(1), pages 381-402, May.
    9. Ellison, Glenn & Fudenberg, Drew, 1993. "Rules of Thumb for Social Learning," Journal of Political Economy, University of Chicago Press, vol. 101(4), pages 612-643, August.
    10. Ro'ee Levy, 2021. "Social Media, News Consumption, and Polarization: Evidence from a Field Experiment," American Economic Review, American Economic Association, vol. 111(3), pages 831-870, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buechel, Berno & Hellmann, Tim & Klößner, Stefan, 2015. "Opinion dynamics and wisdom under conformity," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 240-257.
    2. , & ,, 2015. "Information diffusion in networks through social learning," Theoretical Economics, Econometric Society, vol. 10(3), September.
    3. Li, Wei & Tan, Xu, 2021. "Cognitively-constrained learning from neighbors," Games and Economic Behavior, Elsevier, vol. 129(C), pages 32-54.
    4. Delia Coculescu & Médéric Motte & Huyên Pham, 2024. "Opinion dynamics in communities with major influencers and implicit social influence via mean-field approximation," Mathematics and Financial Economics, Springer, volume 18, number 7, February.
    5. Jadbabaie, Ali & Molavi, Pooya & Sandroni, Alvaro & Tahbaz-Salehi, Alireza, 2012. "Non-Bayesian social learning," Games and Economic Behavior, Elsevier, vol. 76(1), pages 210-225.
    6. Daron Acemoglu & Asuman Ozdaglar, 2011. "Opinion Dynamics and Learning in Social Networks," Dynamic Games and Applications, Springer, vol. 1(1), pages 3-49, March.
    7. Daron Acemoglu & Munther A. Dahleh & Ilan Lobel & Asuman Ozdaglar, 2011. "Bayesian Learning in Social Networks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 78(4), pages 1201-1236.
    8. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining influential models," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01318081, HAL.
    9. Grabisch, Michel & Rusinowska, Agnieszka, 2013. "A model of influence based on aggregation functions," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 316-330.
    10. Michel Grabisch & Agnieszka Rusinowska, 2020. "A Survey on Nonstrategic Models of Opinion Dynamics," Games, MDPI, vol. 11(4), pages 1-29, December.
    11. Battiston, Pietro & Stanca, Luca, 2015. "Boundedly rational opinion dynamics in social networks: Does indegree matter?," Journal of Economic Behavior & Organization, Elsevier, vol. 119(C), pages 400-421.
    12. Matthew O. Jackson & Benjamin Golub, 2007. "Naïve Learning in Social Networks: Convergence, Influence and Wisdom of Crowds," Working Papers 2007.64, Fondazione Eni Enrico Mattei.
    13. Jakob Grazzini & Domenico Massaro, 2021. "Dispersed information, social networks, and aggregate behavior," Economic Inquiry, Western Economic Association International, vol. 59(3), pages 1129-1148, July.
    14. Ozan Candogan & Nicole Immorlica & Bar Light & Jerry Anunrojwong, 2022. "Social Learning under Platform Influence: Consensus and Persistent Disagreement," Papers 2202.12453, arXiv.org, revised Oct 2023.
    15. Fernandes, Marcos R., 2023. "Confirmation bias in social networks," Mathematical Social Sciences, Elsevier, vol. 123(C), pages 59-76.
    16. Michel Grabisch & Agnieszka Rusinowska, 2016. "Determining models of influence," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 26(2), pages 69-85.
    17. Michel Grabisch & Agnieszka Rusinowska, 2010. "Iterating influence between players in a social network," Post-Print halshs-00543840, HAL.
    18. Azzimonti, Marina & Fernandes, Marcos, 2023. "Social media networks, fake news, and polarization," European Journal of Political Economy, Elsevier, vol. 76(C).
    19. Jakob Grazzini & Domenico Massaro, 2016. "Dispersed Information and the Origins of Aggregate Fluctuations," CESifo Working Paper Series 5957, CESifo.
    20. Arieli, Itai & Babichenko, Yakov & Shlomov, Segev, 2021. "Virtually additive learning," Journal of Economic Theory, Elsevier, vol. 197(C).

    More about this item

    Keywords

    Fake news; Misinformation; Social networks; Social Media; Wisdom of Crowds;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation
    • Z13 - Other Special Topics - - Cultural Economics - - - Economic Sociology; Economic Anthropology; Language; Social and Economic Stratification

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20220097. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.