IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20210027.html
   My bibliography  Save this paper

Sectoral slowdowns in the UK: Evidence from transmission probabilities and economic linkages

Author

Listed:
  • Eva Janssens

    (University of Amsterdam)

  • Robin Lumsdaine

    (Erasmus University Rotterdam)

Abstract

This paper studies shock transmission across macroeconomic sectors in the UK, using data from the Bank of England's Flow of Funds statistics. We combine two different approaches to quantify the spread of shocks to assess whether sectors with large bilateral economic linkages as measured through network data have a greater statistical likelihood of shock transmission between them. The combination of both approaches reveals the Monetary Financial Institutions sector's role as shock absorber, and identifies the most important channels of shock transmission. The inferential discrepancies between network data and the actual spillovers highlight the contribution of the proposed methodology.

Suggested Citation

  • Eva Janssens & Robin Lumsdaine, 2021. "Sectoral slowdowns in the UK: Evidence from transmission probabilities and economic linkages," Tinbergen Institute Discussion Papers 21-027/III, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20210027
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/21027.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    2. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    3. Daron Acemoglu & Pablo D. Azar, 2020. "Endogenous Production Networks," Econometrica, Econometric Society, vol. 88(1), pages 33-82, January.
    4. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    5. Glasserman, Paul & Young, H. Peyton, 2015. "How likely is contagion in financial networks?," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 383-399.
    6. repec:ulb:ulbeco:2013/13388 is not listed on IDEAS
    7. Paul Glasserman & Peyton Young, 2015. "Contagion in Financial Networks," Economics Series Working Papers 764, University of Oxford, Department of Economics.
    8. Burrows, Oliver & Cumming, Fergus, 2015. "Mapping the UK financial system," Bank of England Quarterly Bulletin, Bank of England, vol. 55(2), pages 114-129.
    9. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eva F. Janssens & Robin L. Lumsdaine, 2024. "Sectoral slowdowns in the United Kingdom: Evidence from transmission probabilities and economic linkages," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 22-40, January.
    2. van de Leur, Michiel C.W. & Lucas, André & Seeger, Norman J., 2017. "Network, market, and book-based systemic risk rankings," Journal of Banking & Finance, Elsevier, vol. 78(C), pages 84-90.
    3. Paulo Ferreira & Éder J.A.L. Pereira & Hernane B.B. Pereira, 2020. "From Big Data to Econophysics and Its Use to Explain Complex Phenomena," JRFM, MDPI, vol. 13(7), pages 1-10, July.
    4. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Networks, Shocks, and Systemic Risk," NBER Working Papers 20931, National Bureau of Economic Research, Inc.
    5. Stelios Giannoulakis & Plutarchos Sakellaris, 2023. "Financial crises, firm‐level shocks and large downturns: Evidence from Greece," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 1549-1562, April.
    6. Agudze, Komla M. & Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco, 2022. "Markov switching panel with endogenous synchronization effects," Journal of Econometrics, Elsevier, vol. 230(2), pages 281-298.
    7. Kristina Barauskaite & Anh Dinh Minh Nguyen, 2021. "Direct and network effects of idiosyncratic TFP shocks," Empirical Economics, Springer, vol. 60(6), pages 2765-2793, June.
    8. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    9. Maya Jalloul & Mirela Miescu, 2021. "Equity Market Connectedness across Regimes of Geopolitical Risks," Working Papers 324219805, Lancaster University Management School, Economics Department.
    10. Spiros Bougheas & Adam Hal Spencer, 2022. "Fire sales and ex ante valuation of systemic risk: A financial equilibrium networks approach," Discussion Papers 2022/04, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    11. Civitarese, Jamil, 2016. "Volatility and correlation-based systemic risk measures in the US market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 55-67.
    12. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    13. Billio, Monica & Casarin, Roberto & Rossini, Luca, 2019. "Bayesian nonparametric sparse VAR models," Journal of Econometrics, Elsevier, vol. 212(1), pages 97-115.
    14. Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
    15. Torri, Gabriele & Giacometti, Rosella & Tichý, Tomáš, 2021. "Network tail risk estimation in the European banking system," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    16. Katerina Rigana & Ernst-Jan Camiel Wit & Samantha Cook, 2021. "Using Network-based Causal Inference to Detect the Sources of Contagion in the Currency Market," Papers 2112.13127, arXiv.org.
    17. Yong Tang & Jason Jie Xiong & Zi-Yang Jia & Yi-Cheng Zhang, 2018. "Complexities in Financial Network Topological Dynamics: Modeling of Emerging and Developed Stock Markets," Complexity, Hindawi, vol. 2018, pages 1-31, November.
    18. Kexin Zhang & Simon Trimborn, 2024. "Influential assets in Large-Scale Vector AutoRegressive Models," Tinbergen Institute Discussion Papers 24-080/III, Tinbergen Institute.
    19. Christoph Aymanns & J. Doyne Farmer & Alissa M. Keinniejenhuis & Thom Wetzer, 2017. "Models of Financial Stability and their Application in Stress Tests," Working Papers on Finance 1805, University of St. Gallen, School of Finance.
    20. Kosmidou, Kyriaki & Kousenidis, Dimitrios & Ladas, Anestis & Negkakis, Christos, 2017. "Determinants of risk in the banking sector during the European Financial Crisis," Journal of Financial Stability, Elsevier, vol. 33(C), pages 285-296.

    More about this item

    Keywords

    Flow of Funds; contagion; epidemiology; intersectoral networks; Gibbs sampling; Bayesian priors;
    All these keywords.

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • G01 - Financial Economics - - General - - - Financial Crises

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20210027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.